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Abstract

The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality.

An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of

pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors

occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most

commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-

PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were

chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) mag-

netometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive

performance, that is, each method performs better under the test conditions for which the method was developed than it does under other

conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were com-

plementary to each other, and a combination of the two methods yields better estimation performance. 
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1. INTRODUCTION

The 3D position of an object (or person) is a physical quantity

used in various fields. A GPS is commonly used to determine the

position of the object [1-3]. However, a GPS is difficult to use

indoors and is inaccurate when it is difficult to receive satellite

signals. In addition, a GPS has a low sampling rate. Therefore, a

GPS is not suitable for pedestrian position estimation, because

pedestrians frequently change walking directions and are indoors

most of the time [4].

Recently, due to the rapid development of sensor manufacturing

technology, small and affordable inertial measurement units

(IMUs) have become popular. In addition, research into pedestrian

dead reckoning (PDR), which estimates the relative position of

pedestrians using an IMU, has become increasingly common.

Inertial navigation system-based (INS-based) PDR, hereafter INS-

PDR, estimates the pedestrian position by integrating the IMU’s

accelerometer signal twice. Therefore, it has the disadvantage of

accumulating errors rapidly in the process of integrating the

accelerometer signal twice [5]. In addition, the accelerometer

signal of the IMU contains a gravitational acceleration; thus, it is

important to remove this gravitational acceleration. To remove the

gravitational acceleration from the accelerometer signal, the

attitude of the sensor must be accurately estimated. However, it is

not easy to accurately estimate the attitude using the IMU under

dynamic conditions, i.e., when the pedestrian is walking [6].

Additionally, since it is difficult to accurately estimate the

direction in which the pedestrian is walking using only the IMU,

the correction of the error in the estimation of the walking

direction is directly related to the accuracy of the position

estimation. 

Various methods have been proposed to reduce drifts caused by

accumulated integration error in the INS-PDR. The most common

method is the zero velocity update method (ZUPT) [1, 7-18]. A

ZUPT corrects the velocity at every step to prevent rapidly

accumulating drifts, but it cannot correct the accumulating error in

the estimation of position caused by the orientation error and

sensor noise. In INS-PDR, not only the error in the estimation of

the horizontal component of the position (horizontal position
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error) but also the error in the estimation of the vertical component

of the position (vertical position error) accumulates. Several

methods have been proposed to correct this [9-12]. However, in

most cases, the vertical position is corrected by limiting the

walking of stairs, and the vertical position of the slope walking is

not corrected. In INS-PDR, the accuracy of the walking direction

estimation (i.e., heading) is directly related to the horizontal

position error. The use of an IMU alone does not directly correct

the heading error, so it is corrected based on assumptions. In the

heuristic drift elimination (HDE) method, pedestrians are assumed

to walk primarily along the walls or corridors of buildings. It is

also assumed that the interior/exterior interfaces of structures are

generally perpendicular. The HDE sets the dominant direction for

the indoor structure and corrects the heading in the near dominant

direction [13]. Several methods that are based on the HDE

method, such as iHDE [14], MiHDE [15], and AHDE [16], have

been proposed. These methods commonly are limited, because

they can correct errors in the heading only when the pedestrian is

walking in a straight line. A heading correction method using map

information has been proposed [17]. This method corrects the

pedestrian’s heading by comparing the map information with the

heading of the pedestrian, assuming that pedestrians walk along

the walls of a building. Another heading correction method

involves estimating the heading by constructing a virtual

multipath [18]. A method in which the stride length is estimated

to reduce the moving distance error for each step has been

proposed [19-21]. The performance of these methods is dependent

upon the accuracy of the stride length estimation. Therefore, the

error may increase when the stride length is incorrectly estimated.

Most IMU-based methods can somewhat reduce drifts with some

assumptions.

Various methods have been proposed that combine IMUs with

other sensors to correct drifts. Some of these combine IMUs with

identification devices to determine the position of pedestrians [22-

24]. Typically, beacons, radio frequency identification, and

ultrasonic sensors are used. These methods can determine the

position of the user and can inhibit position accumulation errors

occurring in the PDR. However, in order to use these methods, the

user must establish the environment in which they are used. In

radio frequency identification, three or more radio wave

identification devices must be installed in the space to obtain

accurate position information. The magnetometer uses the earth’s

magnetic field to estimate the heading of pedestrians [25-27].

Accordingly, magnetometers are frequently used with IMUs that

cannot directly estimate the heading. However, they are sensitive

to the surrounding magnetic fields, and large errors can result

from their use in a magnetically heterogeneous space.

In this study, the features of four existing INS-PDR methods

that rely on shoe-mounted IMUs were investigated, and their

performances under various conditions were compared. The

selected methods consist of the vertical position correction method

[9], the stride length correction method [19], and the advanced

HDE method AHDE [16]. We were also able to include the

magnetometer-based heading correction method [25] in our study.

In general, a magnetometer is used to estimate the heading, and

most IMUs have embedded magnetometers. The same extended

Kalman filter (EKF) was used in all the methods to ensure an

accurate comparison.

2. METHODS

The EKF used in the experiments is based on that proposed in [25].

The error state vector of the EKF is .

Here,  is the orientation error expressed in terms of the roll (α),

pitch (β), and yaw (γ) of the Euler angle;  and  represent the

gyroscope and accelerometer biases, respectively, and  and 

represent the position and velocity errors, respectively. The yaw in the

Euler angle represents the heading.

2.1 EKF for pedestrian dead reckoning

The INS-PDR proposed in [25] estimates the position and

orientation of pedestrian shoes by integrating the accelerometer

and gyroscope signals from the IMU. Each sensor is modeled as

 (1.a)

 (1.b)

where  and  represent the accelerometer and gyroscope

signals in the kth frame with respect to the sensor coordinate {S},

respectively (recall that the sensor is attached to the shoe), and 

represents the gravity with respect to the sensor coordinate. 

represents the acceleration with the gravity and the bias are

removed from the accelerometer signal, and  represents the

angular velocity with the bias removed from the gyroscope signal.

, the orientation of the sensor coordinate {S} with respect to

the inertial coordinate {I}, is updated using .

 (2)

where  represents the sampling time and  denotes the
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skew symmetric matrix of . The subscript  denotes a

priori at the current frame, and  denotes a posteriori at the

previous frame.

The position of the pedestrian is updated by integrating the

acceleration with respect to the inertial coordinate {I}. In this case,

the integrated acceleration is the gravity removed acceleration

using .

 (3)

where , and the magnitude of gravity g is 9.8 m/s2.

The recursive equation that is used to update the position of the

pedestrian is

 (4.a)

 (4.b)

, , and  denote the predicted values updated

by integration. They are corrected using the EKF. The corrected

,  and  are obtained from Eq. (5).

 (5.a)

 (5.b)

  (5.c)

The transient model of the pedestrian dead reckoning EKF,

based on the error state vector , is as

follows:

  (6)

where  is the process noise, which has a covariance matrix of

, and  is a transition matrix. The transition

matrix  is 

 (7)

The measurement model that defines the relationship between

the measurement vector and the state vector is 

  (8)

where  denotes the observation matrix and  represents the

measurement noise with covariance matrix .

The most common drift correction method used in PDR is the

zero velocity update (ZUPT) method, in which the velocity drift

is corrected by setting the walking velocity to zero in the stance

phase. The measurement vector for the ZUPT method is

, and the observation matrix for

ZUPT is  . The ZUPT is

applied to all other drift correction methods described later. In this

paper, we utilize the stance phase detection method proposed in

[25].

2.2 IMU-based drift reduction methods

The ZUPT is primarily used to correct for the drift in velocity,

but it is limited in its ability to correct for the position and

orientation drifts. In our study, we compared drift reduction

methods that use an IMU. Exceptionally, the method using

magnetometer is included in the comparison method. 

2.2.1 Altitude correction

The altitude correction method (AC) is based on [9]. In the AC

detects stair walking is detected and the vertical position is

corrected. The AC is used in the stance phase and estimates the

vertical displacement change  to distinguish walking.

  (9)

where,  denotes vertical position in the kth frame, and it is

,where .  denotes the

vertical position of the pedestrian in the stance phase at the i-1th

step (previous step). The threshold value  determines the

presence of stairs, and the vertical displacement is determined by

comparing  and .
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Table 1. Summary of the drift reduction methods

Sensor Target to be corrected Assumption Limitation

AC IMU only Vertical position Constant and given stair height Working only for stair and level walking

SLC IMU only Step length - Dependent on accuracy of step length estimation

AHDE IMU only Heading Straight walking Working only for straight walking

MHC IMU+magnetometer Heading - Sensitive on magnetic homogeneity
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 (10)

where,  is the vertical position estimated by AC and  is

the height of the steps. The vertical position of the ith step  is

updated to the vertical position  at the end of the stance phase.

The vertical position error is defined by . The

measurement model used in the AC method is

, (11)

The AC only corrects for errors in the vertical position due to

stair walking. It does not correct for these errors when the

pedestrian walks on slopes. In addition, the height of the stairs

must be known and constant.

2.2.2 Step length correction

The step length correction method (SLC) corrects the moving

distance error for one step by estimating the stride length using a

method that is does not rely upon acceleration integration. The

SLC considered in this study is based on the proposed method in

[19], which estimates the stride length L using the maximum and

minimum values of the accelerometer signals during one step. The

stride estimation method is modeled by

  (12)

where  and  represent the maximum and minimum values

of the magnitude of the accelerometer signal during one step.  and

 are the stride length estimation parameters, which vary from

person to person. The error of the stride length  is as follows:

  (13)

where  denotes the horizontal distance for one step in the kth

frame, i.e., . The SLC

measurement model is

, (14)

In the SLC, the horizontal distance is corrected by the estimated

stride length. Since the stride length estimated from Eq. (12) has

errors, the horizontal distance estimation error cannot be

completely eliminated by the SLC.

2.2.3 Heuristic drift elimination

In the heuristic drift elimination method (HDE), most of the

building walls and interior corridors are assumed to be straight

and perpendicular to each other [13]. Based on this assumption,

HDE sets eight dominant directions (0°, 45°, 90°, … , 315°) and

corrects the heading if it is determined that the pedestrian is

straight walking in This study considers the advanced heuristic

drift elimination method (AHDE) proposed in [16]. The AHDE

method uses linear regression to determine if the walking

direction is for 6 steps and corrects the heading if pedestrian walks

straight and dominant direction. Additionally, if the pedestrian

walks in a straight line but not dominant, AHDE corrects the bias

in the gyroscope signal. The cost function C for determining

whether the walking direction is in a straight line is the sum of

perpendicular distances of 6 steps from the linear function

representing the walking direction for 6 steps.

 (15)

where  and  represent the x- and y-axis positions at the

jth step, respectively. a and b are defined in [16]. After calculating

the cost function C, a threshold for the cost function  is set to

determine whether the walking direction is straight, i.e., it is

straight if .

If the walking direction is straight for six consecutive steps in

a row, it is determined whether the walking direction is the

dominant direction by the heading error of the AHDE 

( ), i.e., dominant straight if . Here, 

represents the heading obtained from linear regression, and

 represents the dominant direction closest to the walking

direction.  denotes the threshold for determining whether the

direction is dominant.

If it is determined that the pedestrian is walking straight and

along one of the dominant directions, the measurement model is 

, (16)

If the walk is not along one of the dominant directions, AHDE

corrects  which is the z-axis of .

  (17.a)

 (17.b)

where  is the walking direction for the ith step, and  uses

the (3,3) component of  as the parameter for the bias. A

walk in a straight line that is not in a dominant direction is

modeled by
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,  (18)

If it is not a straight walk, it is the same as the measurement

model that uses ZUPT only.

The AHDE has limitations that it cannot correct heading when

pedestrian is not walking in a straight, and even if it is walking in

a straight but not dominant direction, the heading cannot be

corrected directly. 

2.2.4 Magnetometer-based heading correction

The magnetometer can estimate the heading from the Earth

magnetic field vector. Therefore, this can correct the heading error

occurring in the PDR. This study used the method of the

magnetometer-based heading correction (MHC) proposed in [25]. 

To estimate the heading in the MHC needs to convert the

observation coordinate of the magnetometer signal through the

roll (α) and pitch (β) of .

(19)

where  represents the magnetometer signal obtained by

converting the coordinate  to an inertial coordinate using

the roll and pitch of . The roll is 

, and the pitch is . The

equation for estimating the heading using  is

 (20)

where  is the estimated heading from the magnetometer and

 is the dip angle in the Earth’s magnetic field. The heading

error  is estimated using the MHC. The

measurement model used to correct the heading error is

, (21)

Because the MHC method relies upon the use of a

magnetometer, the heading estimation error can be increased

when MHC is used in a magnetically heterogeneous environment.

2. EXPERIMENTS

To compare the performances of the PDR error reduction

methods, we used MTw (Xsens Technologies B.V., Netherlands),

which consists of an accelerometer, a gyroscope, and a

magnetometer. The IMU was fixed in the shoelace of the right

shoe and sampled at 100 Hz (see Fig. 1).

The routes along which the pedestrian walked in each of the

four experiments varied. Table 2 summarizes the conditions under

which each experiment was conducted. 

The first experiment was conducted outdoors, and the route

along which the experiment was conducted consisted of traversing

back-and-forth along a straight 100 m path (Test 1). The second

experiment was also conducted outdoors, and the pedestrian

walked the center circle of a football stadium (Test 2). The route

started from the sideline; the pedestrian walked in the center circle

twice and then returned to original position. The third experiment

was conducted indoors in a heterogeneous magnetic environment

(compared to the outdoor environments) (Test 3). The standard

deviation of the magnetometer signal norm from the indoor

experiment is 0.55 a.u., which is larger than those from the other

three experiments. The fourth experiment was conducted outdoors

and included a stair path (Test 4). In all experiments, the paths

along which the pedestrian walked terminated at the same place at

which they started. 

In the EKF, all parameters except those related to the accelerometer
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Fig. 1. Shoe-mounted IMU.

Table 2. Test conditions

Environ-

ment

Length of the course 

(m) Dominant 

direction

Standard 

deviation 

of 

(a.u.)Horizontal Vertical

Test 1 Outdoor 200 0 Yes 0.02

Test 2 Outdoor 153.7 0 No 0.01

Test 3 Indoor 125.6 0 Yes 0.55

Test 4 Outdoor 147.4 10.2 Yes 0.29

m
y

I 9 I
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and gyroscope were manually tuned. The covariancE MATRIX FOR

THE PROCESS NOISE IS .

Here,  and  are the standard deviations of the magnitude of

the accelerometer and gyroscope signals, respectively, and they

were measured under static conditions. The elements of the

covariance matrix of the measurement noise are: ,

, , , and .

The parameters are: , , , and

. Here,  and  are obtained through gait experiments.

The final position error (FPE) was used to compare the

performance of the methods. Here, the FPE was calculated by

dividing both horizontally and vertically. The error calculated by

comparing the total travel distance estimated using each method

with the manually measured travel distance was used as the total

travel distance error (TTDE). TTDEs were computed for the

horizontal component of the travel distance—not the vertical.

3. RESULTS AND DISCUSSIONS

Table 3 shows the vertical and horizontal FPEs and the TTDEs

from the four methods for each experiment. Table 3-(a) shows that

for Test 1, the AC and SLC yield a horizontal FPE of over 28m.

In contrast, the AHDE and MHC give an FPE of less than 1 m.

Therefore, it is necessary to correct the heading to accurately

estimate the horizontal position. The TTDE corresponding to the

SLC is higher than that obtained using any of the other methods.

This is because there are errors in the stride length estimation by

the accelerometer. The vertical FPE corresponding to the SLC is

high, because errors in the stride length estimation affect the

vertical position estimation.

Fig. 2 shows the walking trajectory in Test 1 and a norm of

magnetometer signal representing the tested magnetic

environment. From the AHDE, the correction of the heading is

well corrected because the path in this test is along one of the

dominant directions. The MHC yields an increase in the error near

the -40 m of x-direction. Therefore, a heading estimation error

occurs even in an environment where the standard deviation of the

magnetometer signal norm is 0.02 a.u. Since the pedestrian

traveled back and forth along the same path, the starting and

ending positions of the pedestrian are the same. As a result, the

horizontal FPE obtained via the MHC is 0.8 m. The AC gives

accurate vertical position estimation.

Table 3-(b) shows the results for Test 2, in which the path is

circular. Because the path is circular, the heading correction from

the AHDE is not worked. As a result, the horizontal FPE from the

AHDE is the highest among the four methods. In contrast, the

MHC yields the lowest horizontal FPE, because the heading

correction is possible regardless of the path shape. The magnetic

environment in Test 2 is the most homogeneous among those of

the four experiments. For this test, the standard deviation of the

magnetometer signal norm is 0.1 a.u. The difference between the

walking trajectory in the MHC and the reference can be seen in

Fig. 3. The figure shows that the heading estimation accuracy may

actually be reduced if the magnetic disturbance is continuously

applied-even though the disturbance is weak. 

Table 3-(c) shows the results for Test 3, which was conducted

indoors. Since it was done indoors, the standard deviation of the

magnetometer signal norm is the largest (0.55 a.u.). Therefore, the

MHC shows a significant performance degradation, and it has the

largest vertical and horizontal FPE and TTDE values. Fig. 4

shows walking trajectory for Test 3. In Fig. 4-(a), one sees that the

2 2
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Table 3. Estimation errors (unit: m).

(a) Test 1

Horizontal

 FPE

Vertical

 FPE
TTDE

AC 29.0 0.0 0.4

SLC 28.2 1.0 2.3

AHDE 0.3 0.3 0.5

MHC 0.8 0.3 0.5

(b) Test 2

Horizontal

 FPE

Vertical

 FPE
TTDE

AC 5.3 0.0 1.2

SLC 6.0 1.4 3.0

AHDE 9.2 0.4 0.8

MHC 2.2 0.4 0.8

(c) Test 3

Horizontal 

FPE

Vertical

 FPE
TTDE

AC 6.8 0.0 0.8

SLC 7.1 0.3 0.4

AHDE 0.3 0.3 1.1

MHC 7.3 1.5 1.0

(d) Test 4

Horizontal 

FPE

Vertical

 FPE
TTDE

AC 13.2 0.1 1.2

SLC 13.1 0.8 13.9

AHDE 2.3 2.2 0.0

MHC 4.5 2.5 1.2
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trajectory of the MHC varies significantly from that of the

reference due to the high heading estimation error. Because the

FPE only compares the starting and ending positions, there is only

a 0.2 m difference between the horizontal FPE from the MHC and

that from the SLC, despite the fact that the MHC and the reference

have completely different trajectories. In addition, the TTDE from

the MHC varies about 2.3 m from that obtained via the SLC.

Therefore, verification using FPE and TTDE has a limitation that

cannot account for errors occurred during walking.

Table 3-(d) shows the errors for Test 4, which includes the

stairs. The AHDE shows the lowest horizontal FPE among the

four methods. These values match those for Tests 1 and 3.

However, Test 4 includes stair walking, so the vertical FPE error

from the AHDE is 2.2 m higher than that for the other

experiments. The AC shows the lowest error (0.1 m), because it

corrected the vertical position of the stair walking. Fig. 5 shows

the walking trajectory corresponding to Test 4 for each method.

The vertical position estimation performance of the AC is shown

Fig. 2. Results of Test 1: (a) plan view, (b) elevation with respect to

time, and (c) norm of magnetometer signals.

Fig. 3. Results of Test 2: (a) plan view, (b) elevation with respect to

time, and (c) norm of magnetometer signals.
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in Fig. 5-(b). The AC shows a constant vertical position, even

though the path includes stairs. However, the AC may be used if

the user knows the height of the stairs. In practice, the height of

the stairs may vary both within a stairwell and from one location

to the next. Therefore, the AC can only be used when the height

of the stairs is known and constant.

Fig. 5-(c) shows that Test 4 was conducted outdoors in a

magnetically heterogeneous environment. As a result, although

the horizontal FPE from the MHC is 4.5 m, the walking trajectory

in the MHC is estimated differently than it is for the reference

trajectory. This is due to the heading estimation error, as shown in

Fig. 5-(a). For Test 4, the TTDE from the SLC is 13.9 m, which

is larger than it is for the other experiments. In the SLC, the stride

length estimation uses the maximum and minimum accelerations

of one step. Because Test 4 includes stairs, the actual stride length

is shorter than the estimated stride length from the SLC, even

though the stair walking acceleration is similar to that obtained

when the path is level. Therefore, when the path involves stairs,

Fig. 4. Results of Test 3: (a) plan view, (b) elevation with respect to

time, and (c) norm of magnetometer signals.
Fig. 5. Results of Test 4: (a) plan view, (b) elevation with respect to

time, and (c) norm of magnetometer signals.
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the moving distance error obtained via the SLC increases.

We examined the performance of the four selected methods by

using them in four different experiments. The performance of the

methods varies depending on the experimental conditions. In most

of the INS-PDR, several drift reduction methods were combined

to reduce the drift in the position estimation. The AC produces the

lowest vertical position error, and the AHDE produces the lowest

horizontal position error. In this study, we combined the AC and

AHDE based on the results of the experiments. Table 4 shows the

results of the combined method. In tests 1, 3, and 4, to which the

AHDE method can be applied, low vertical and horizontal FPE

values are obtained. In particular, the combined method produces

a lower horizontal FPE than the AHDE alone does. Thus, it is

necessary to combine several methods appropriately for accurate

position estimation in INS-PDR.

5. CONCLUSION

In this study, the performances of four drift reduction pedestrian

dead reckoning methods, which used a shoe-mounted-IMU, were

evaluated. Their performances were compared by applying the

methods to four experiments that were designed to clearly reveal

the characteristics of the methods. Experimental results reveal that

each the methods exhibits condition-sensitive performance, i.e.,

each method performs best under test conditions for which the

method was developed (and is less effective under other

conditions). The AC and AHDE perform better than the SLC and

MHC do overall. In order to properly use the SLC and MHC, it is

necessary to accurately estimate the parameters and consider the

experimental environment. The AC and AHDE are complementary,

and a combination of the two methods yields the best estimation

performance.
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