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Abstract

This mini review summarizes some of the recent advances in machine-learning (ML)-driven chemical and biological sensors. Spe-

cific focus is on field-effect-transistor (FET)-based sensors with a description of their structures and detection mechanisms. Key ML

techniques are briefly reviewed for an audience not familiar with the basic principles. We mainly discuss two aspects: (1) data analysis

based on ML and (2) ML applied to sensor design. In conclusion, the challenges and opportunities for the advancement of ML-based

sensors are briefly considered.
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1. INTRODUCTION

Chemical and biological sensors have been used in a variety of

fields, including basic research, medicine, medical diagnosis, and

health monitoring. Label-free electrical detection based on field-

effect transistors (FETs) have many advantages, such as high

sensitivity, small size, and easy integration with electronic circuits

[1]. Researchers work to improve the sensitivity and ensure ease

of use of the FET-based sensors to extend their use in practical

applications. One of the strategies to increase detection sensitivity

is to incorporate nanomaterials such as nanoparticles, nanowires,

and two-dimensional (2D) materials, which increase the surface-

to-volume ratio of the FET channel or strengthen the catalytic

effects to sense target molecules [2,3]. The FET-based sensors can

be fabricated on a flexible substrate, enabling wearable applications

to monitor the health status of humans [4].

Machine learning (ML) is a branch of artificial intelligence that

provides computers with the ability to automatically learn from

data, identify patterns, and make decisions without being

explicitly programmed [5]. Recently, the advances in ML have

been driven by three factors: improved computing power, data

availability and appropriate algorithms [6]. These advances enable

ML techniques to make accurate predictions based on large sets of

data [7].

ML enables researchers to analyze massive sensor data,

assisting in designing experiments and new type of sensors [8].

Multidimensional data collected from an array of sensors are

sometimes so complicated that humans have difficulty in

analyzing them. However, ML algorithms are used to learn from

data, recognize patterns, and classify the data. The ability to

predict the result of new experiments can be utilized to design

new high-performance sensors.

In this mini review, we discuss the effectiveness of ML to

advance the technology associated with FET-based sensors (Fig. 1). 

2. FET-BASED CHEMICAL AND 

BIOLOGICAL SENSORS

2.1 Structures

As shown in Fig. 2, a typical FET-based chemical and biological

sensor is composed of a semiconducting material, two electrodes

(source and drain) connected to the two ends, and a gate electrode

that modulates the mobile charge carrier concentration within the
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Fig 1. Scheme explaining how ML interacts with FET-based chem-

ical and biological sensors in terms of sensor design and data

analysis.
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semiconducting material by an electrical field effect through a gate

dielectric, resulting in the electrical current. The semiconducting

materials can be categorized into group IV semiconductors (i.e., Si

and Ge) [9,10], III-V semiconductors (i.e., GaN and InP) [11],

metal oxides (i.e., ZnO, In2O3, and SnO2) [12], and conducting

polymers (i.e., polyaniline and polypyrrole) [13]. The sensitivities

of FET-based sensors can be increased by replacing channel

materials with nanomaterials with high surface-to-volume ratios

for the channel, such as nanowires, nanotubes, and 2D materials

[14].

FET-based sensors typically have a bottom-gate structure where

a handling substrate of silicon-on-insulator wafer (or a highly

doped silicon substrate) is used as a gate. In this case, although the

substrate for the sensor fabrication functions as a gate, and thus

the fabrication of a gate electrode is simple, the individual

addressing of multiple sensor devices becomes difficult due to a

common gate structure. To overcome this problem, side gate

configuration where gate electrodes are positioned beside the

semiconductor materials is applied [15].

If semiconductor materials directly react with specific analytes,

they can be utilized as sensors without additional surface

functionalization. Otherwise, the surfaces of semiconductor

materials are functionalized with receptors that selectively capture or

react with target molecules. Receptors and catalytic nanomaterials

decorated on the surface improve the specificity and sensitivity of

the sensor by specific binding and catalytic interaction.

Biomolecular receptors including deoxyribonucleic acid (DNA),

antibody, antigen, protein, and enzyme are used for the analyte

detection based on specific binding and reaction. For antigen

detection, nucleic acid aptamer as a receptor shows higher

chemical stability than antibody. In gas sensors, catalytic

nanoparticles (Pd, Pt, and Au) decorated on the FET surface

accelerate the decomposition of gas molecules and react with the

semiconductor channel, leading to higher sensitivity and

selectivity. 

The passivation layer surrounding the sensing area prevents

unwanted chemical reactions. Particularly, in the case of

biosensors operating in ionic solution, passivation layer should be

covered on the metal electrodes or interconnection lines to prevent

leakage current through the solution. Furthermore, materials used

to prevent non-specific binding to the passivation layer enable

biomolecules to focus on the sensing area and enhance sensitivity

and detection limits.

2.2 Detection mechanisms

In FET-based sensors, the existence and concentration of target

molecules can be recognized by monitoring the electrical

characteristics such as conductance, resistance, and threshold

voltage after the exposure to target species due to various

mechanisms explained below. 

2.2.1 Charge transfer

Primary mechanism of metal oxide nanowire-based gas sensors

is the ionosorption of oxygen (Fig. 2). Oxygen absorbed on the

surface of metal oxide nanowires (usually n-type nanowires)

works as the surface state and receives electrons from the metal

oxide nanowire to form O- and O2

- ions [16]. This charge transfer

between oxygen and FET surface generates surface space charge

(depletion region) in the semiconducting material, which increases

the resistance. If reducing gas such as carbon monoxide (CO)

removes the absorbed oxygen from the FET surface, electrons are

released back to the semiconducting material and the resistance is

decreased. The concentration of reducing gas is measured from

the relationship between the resistance and partial pressure of the

reducing gas. 

Some gases react not only with absorbed oxygen ions but also

with the atoms of the semiconducting material. The NH3 or NO2

molecules can penetrate the materials (especially conducting

polymers) and function as electron acceptor and donor,

respectively. As a result of charge transfer, the concentration of the

electrical charge carrier is changed.

Fig 2. Schematic of an FET-based chemical and biological sensor. A

semiconducting material is connected to source/drain elec-

trodes and the current is controlled by the gate electrode. A

passivation layer covers the sensor except the sensing area.

For a gas sensor, analytes such as reducing gas molecules

react with the oxygen absorbed on the semiconducting mate-

rial and the electron transfer to the device occurs (i). For a

biosensor, the surface is functionalized with receptors to cap-

ture analytes. The electrical current is affected by electrostatic

interaction between analytes and semiconducting channel

because of intrinsic charges of analytes bound on nanowire

surface (ii).
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2.2.2 Electrostatic interaction

Electrical charge formed on the FET surface results in an

electrostatic interaction, with electrical carriers flowing in the

semiconducting channel, and affects the current or threshold

voltage of the FET. For example, Pd nanoparticles decorated on

the silicon nanowire decompose hydrogen molecules into

hydrogen atoms, which then create a dipole layer on the surface,

leading to the surface charge [15,17]. The dipole layer from

hydrogen molecules is positively charged and thus attracts

electrons in the n-type nanowire, resulting in an increase of the

current, and decrease of the threshold voltage. The opposite effect

occurs for the p-type nanowires.

In biosensors, target biomolecules are selectively bound to the

nanowire surface through receptors, and the intrinsic charge of the

biomolecules induces the surface charge (Fig. 2) [9,18]. For

example, DNA molecules that are negatively charged due to the

phosphate-deoxyribose backbone induce negative charge to the

FET surface. Proteins express a certain net electrical charge

depending on the combination of amino acids that are protonated

or deprotonated at the given pH of the buffer solution. The pH

value of the buffer solution at which the net charge of

biomolecules becomes neutral is called the isoelectric point (pI).

The biomolecules exhibit positive (negative) charge when

surrounding pH is lower (higher) than pI. In other words, the

polarity and amount of charge are determined by the pH of the

buffer solution.

3. A BRIEF OVERVIEW OF ML

The two main types of ML are supervised learning and

unsupervised learning [19]. In supervised learning, a set of labeled

data is used for training. It means that the training dataset is tagged

with the answer that should be the correct output. Supervised

learning techniques are used for i) classification to group the

output inside a class and ii) regression to predict a single output

value using the training dataset. By contrast, unsupervised

learning operates with unlabeled training dataset, which is a

collection of examples without a correct answer. The most

common unsupervised learning algorithm is clustering; it groups

similar data points into clusters.

3.1 Principal component analysis

Principal component analysis (PCA) is one of the unsupervised

ML techniques used for dimensionality reduction, feature

extraction, and data visualization [19]. PCA is defined as an

orthogonal linear transformation of the data into a new coordinate

system, known as the principal subspace, such that the variance of

the projected data is maximized on the first coordinate (called the

first principal component), the second highest variance on the

second coordinate, and so on (Fig. 3a) [19]. A new set of

dimensions can be obtained from eigenvectors of the covariance

matrix of the data. The eigenvalues of the covariance matrix are

the variances of the principal components. The eigenvector with

the largest eigenvalue (or variance) is known as the first principal

component. A large variance on the first principal component

means that data vary significantly across this dimension, which

can be easily classified [20].

The dimensionality of the data is determined by the number of

Fig 3. Basic machine learning (ML) techniques. (a) Principal com-

ponent analysis (PCA). Illustrated is the transformation of

PCA which reduces many variables to lesser number of new

variables termed principal components. 3D samples are pro-

jected onto a two-dimensional component space that main-

tains the largest variance in the data [23]. (b) Support vector

machine (SVM). Maximum margin and optimal hyperplane

for an SVM trained with samples from two classes. Samples

determining the margin are called support vectors. (c) A con-

ceptual depiction of the “kernel trick,” which involves trans-

forming raw, input data to a high-dimensional feature space

by way of a “similarity” function with corresponding kernel

matrix [21]. (d) Graphical representation of the McCulloch-

Pitts model neuron or threshold unit for ANN. The total input

to a unit is the weighted sum over all inputs, Σ
N

i=1WiXi=W1

X1+W2X2+...+WNXN. If this were below a threshold t, the out-

put of the unit would be 1, and 0 otherwise [22]. (e) Feed-for-

ward network. The network shown takes seven inputs and has

five units in the hidden layer and one output. It is said to be

a two-layer network because the input layer does not perform

any computations and is not counted.
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sensors in an array. For example, an array with five sensors

produces a five-dimensional space. However, the dimensionality

can be reduced to two or three, useful for humans in terms of

visualization, by choosing the dimensions that account for over

95% of the total variance [20]. PCA works well for data with high

correlation between variables (i.e., cross-reactive sensors) by

converting data into a new coordinate system that has a set of

orthogonal vectors.

3.2 Support vector machine

A support vector machine (SVM) is a supervised learning

method used for the regression and classification tasks [21]. The

objective of the SVM is to find a hyperplane that classifies the

data points (Fig. 3b). The hyperplane separates all the data points

that belong to one class from another. For 2D data, a hyperplane

is a straight line, while, for three-dimensional (3D) data, it is a 2D

subspace (or plane). Subsequently, this hyperplane can be used to

determine the class for unknown data. The data points closest to

the hyperplane are known as support vectors. The training of an

SVM operates by maximizing the distance (i.e., the “margin”)

between the support vectors and hyperplane. The larger the

margin, the more confident the prediction. If the data is non-

linearly separable, a kernel function is used to transform the

original data into a higher-dimensional feature space, where the

data can be linearly separated (Fig. 3c).

3.3 Artificial neural networks

Artificial neural networks (ANNs) are inspired by the networks

of biological neurons in the brain so that the computer can learn

about the information presented to solve many types of problems

[22]. Each model neuron consists of input and output units (Fig.

3d). The weighted sum of the inputs is passed through the

activation function that transfers the result to the output unit. A

bias term is also often included in this sum. If the weighted sum

exceeds a certain threshold, the neuron fires so that the output of

the neuron is 1, otherwise 0. In biological neurons, each

connection between the neurons is determined by the strength of

a synapse, which corresponds to the weight denoted by the

coefficient Wi in Fig. 3d. A multi-layer network is formed by

connecting the output of one neuron to the input of another neuron

(Fig. 3e). The training of a neural network is usually performed by

adjusting the weights and biases to produce the output of the

network (predicted value) similar to the target output (actual

value). These adjustments operate in such a way that the error,

defined as the difference between the predicted output and the

target output, is reduced using the backpropagation algorithm

[19]. ANNs can be used for both classification problems with

binary outputs (0 and 1) and regression problems with continuous

outputs.

4. DATA ANALYSIS BASED ON ML

In this section, several examples of ML-enabled data analysis

for FET-based chemical and biological sensors are presented. The

ML algorithms include PCA, SVM, and ANN, which were briefly

discussed in the previous section.

4.1 PCA-based analysis

Jiang et al. fabricated an array of chemiresistive gas sensors

made of sub-100-nm wide conducting polymer nanowires using

nanoscale soft lithography [24]. Poly(3,4-ethylene-

dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) nanowires

were functionalized with different self-assembled monolayers

(SAMs) to identify volatile organic compounds (VOCs) at a low

concentration range (Fig. 4a). The side chains and functional

groups of the SAMs generated a distinct response pattern of each

target analyte. The measured pattern from the gas sensor array

was used for PCA analysis to classify ten VOC vapors, including

ketones, alcohols, alkanes, aromatics, and amines, as shown in

Figs. 4b and 4c. The researchers further used the multivariate

linear regression method to predict acetone concentration against

the actual level in the range of 800 to 2000 ppm with a low

average error of 2.97 ppm.

Kim et al. used an electrospinning method to synthesize

catalyst-loaded one-dimensional semiconductor metal oxide

nanofibers as sensing materials for chemiresistive type breath

sensors to detect potential biomarkers of certain diseases,

including those of hydrogen sulfide, acetone, and toluene in

exhaled breath [25]. Interfering analytes were hydrogen, ethanol,

carbon monoxide, ammonia, methane, pentane, and methyl

mercaptan. The PCA analysis showed that both individual

biomarker species and mixture gases were successfully identified

without overlapping with each other. In addition, the PCA analysis

clearly classified the simulated halitosis breath and the exhaled

breath collected from healthy people into two separate clusters.

Wiederoder et al. developed a cross-reactive array of

chemiresistive sensors composed of polymer-graphene nanoplatelet

(GNP) composite coated electrodes to detect and discriminate
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chemical warfare agents (CWAs) [26]. The array of 12 sensors,

each functionalized with a different polymer-GNP composite, was

exposed 100 times to single analyte vapors, including 5

chemically similar CWA simulants and 8 interfering gases. After

some data preprocessing to reduce the effects of concentration, as

well as noise, the measured data were dimensionally reduced

using PCA, and the first three principal components were selected

for classification. For all analytes, CWA simulants, and interferents,

the accuracy of four ML algorithms (k-nearest neighbors, support

vector classifier, random forest, and linear discrimination analysis)

was in the range of 89-100%.

4.2 SVM-based analysis

Rong et al. utilized an SVM classifier to detect acetone, an

important biomarker related to diabetic ketoacidosis, using

impedimetric biosensors functionalized with insect-derived

chemosensory proteins (Fig. 4d) [27]. The addition of clinically

relevant acetone to the receptor-functionalized electrode caused

only a slight difference (Fig. 4e). Weak/reversible interactions

between small molecules and proteins are a major challenge. To

address the problem, they extracted 152 features from both real

and imaginary impedance at frequencies ranging from 100 kHz to

1 Hz, which could be further reduced to a 2D principal-

components matrix at the 95% confidence interval using the PCA

technique. The SVM exhibited an accuracy of 95 ± 4% in cross

validation and prediction of test samples (Fig. 4f). 

Horsfall et al. prepared an array of seven heterojunction

semiconducting metal oxide sensors (i.e., unmodified, admixed

and 2-layered sensors) consisting of tungsten trioxide (WO3) and

chromium titanium oxide to detect explosive gases [28]. The 2-

layered sensors showed higher sensitivity in response to ethanol,

Fig. 4. Data analysis based on machine learning. (a) A schematic of the SAM functionalized PEDOT: PSS nanowires chemiresistor [24]. (b)

Screen plot of the principal component analysis. (c) PC2 plotted against PC1 for the sensor array to 5 types of VOCs with seven different

concentrations ranging from 800 ppm to 2000 ppm. (d) A schematic of the impedimetric biosensor functionalized with insect-derived

chemosensory proteins (CSP) to analyze weak/reversible interactions [27]. (e) Net impedance at representative cut-off frequencies of

CSP–acetone interactions in the presence and absence of 5 mM acetone. (f) SVM classification for CSP–acetone biosensors using linear

kernel (test accuracy = 96%). Blue dots represent baseline EIS signals (no acetone in samples) and red dots represent positive EIS signals

(5 mM acetone in samples). The decision surface of the SVM classifier is plotted by red and blue regions. (g) Scheme of a molecularly

modified SiNW FET sensor. [30]. (h) Schematic illustration of an ANN model for VOC recognition. (i) Euclidean distance of ANN

outputs using the sensor functionalized with –COOCH3 to identify hexane, hexanol, octane, and their binary and ternary mixtures. Inset:

Schematics of the relationship among single VOCs and their binary and ternary mixtures in ANN outputs.
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ammonia, and nitromethane. The admixed sensors exhibited high

sensitivity when exposed to nitrogen dioxide. Because a single

sensor does not provide the selectivity needed for the detection of

explosives, an SVM algorithm based on an array of seven sensors

was used to demonstrate the selectivity. The sensor array produced

a dataset of 840 vectors, which included the maximum responses

to each gas at given concentrations, initial change in resistivity,

and sensor temperature. The SVM algorithm classified the four

gases with 71.4% accuracy. 

Bian et al. demonstrated carbon-nanotube-based FETs as sensor

devices to discriminate five purine compounds—adenine,

guanine, xanthine, uric acid, and caffeine [29]. One NTFET

device was left bare, and four NTFET devices were decorated

with metal nanoparticles (Au, Pt, Pd, and Rh). For an SVM

analysis, features were extracted from the transfer characteristics

of the NTFET devices cross-sensitive to the analytes. The selected

eleven features were: the relative change in transconductance

(slope), threshold voltage shift, relative changes in conductance at

VG = 0.6 V and –0.6 V, changes in overall conductance at VG =

0.6 V, 0.4 V, 0.3 V, –0.3 V, –0.4 V, and –0.6 V normalized to

conductance at the threshold voltage, and relative change in

minimum conductance. Their approach detected caffeine with

93.4% accuracy. Among the features, transconductance, threshold

voltage, and minimum conductance were the most crucial features

for overall classification. Density functional theory calculations

verified that the selected parameters are associated with the charge

transfer between analyte molecules and carbon nanotubes. 

4.3 ANN-based analysis

Wang et al. reported a combined method based on silcon

nanowire (SiNW) FETs and ANN models to selectively identify

VOCs (Fig. 4g) [30]. Instead of array of different sensors, they

utilized a molecularly modified SiNW FET that produces multiple

device parameters (threshold voltage, hole mobility, subthreshold

swing, and on-state current) as input to ANN models (Fig. 4h).

This approach showed high selectivity toward specific VOCs in

both single-component and multi-component mixtures (Fig. 4i). In

addition, the VOC concentrations could be predicted with mean

prediction errors less than 10%.

Nakhleh et al. demonstrated an array of cross-reactive sensors

composed of a random network of single-walled carbon

nanotubes and molecularly modified gold nanoparticles to analyze

exhaled breath [31]. This sensor array was used for the evaluation

of a total of 2808 breath samples collected from 1404 subjects

having one of 17 different disease types and health controls. Four

numerical sensing features were extracted: the relative change in

the sensor’s resistance at the beginning, middle, and end of the

exposure, as well as the area under the curve of the whole

measurement. The overall patterns of the sensing features had

discriminative characteristics among the diseases. A series of

discriminant factor analysis (DFA) binary classifiers were built

with combinations of sensitive sensors to identify the different

diseases from one another. The average accuracy of the DFA

binary classifiers was 86%.

Kim et al. fabricated the sensor array with carboxylated single-

walled carbon nanotubes with a range of eight pH values (1.9 to

12.1) to detect NH3 and CO2 gases [32]. The resistances of the 16-

channel sensor array were recorded upon exposure to the target

gas. Adjusting the pH value led to orthogonal sensor responses

toward NH3 and CO2: the sensor at pH 1.9 showed strong positive

responses to NH3, and the sensor at pH 9.1 exhibited negative

responses only to CO2. Feature vectors were extracted from raw

data, and processed data, from the 16-channel sensor array.

Subsequently, a neural network model was used to predict NH3

and CO2 concentrations. The model was trained for approximately

500 epochs using 70% of the data, 1/3 of which were used for

cross validation. The trained model produced loss (i.e., the mean

squared logarithmic error) of 0.026 when evaluated against the

test set. The predicted values of NH3 and CO2 concentrations were

well correlated with the exposed (true) values of the test set.

5. SENSOR DESIGN BASED ON ML

5.1 FET design

The performance of chemical and biological sensors based on

FETs is related to the electrical characteristics of FET itself [18].

The voltage, current, and normalized current signals are correlated

with capacitive coupling, transconductance, and subthreshold

swing, respectively [33].

Since many process factors alter the device performance,

choosing the optimal conditions is important to fabricate high-

performance sensors. Cao et al. reported how Design of

Experiments (DoE) combined with ML can optimize several

variables affecting the device performance and accelerate the

process of optimization[34]. In the first round, a fraction factorial

design (based on a Latin square sampling technique), instead of a

full factorial design, was used to find areas of interest for further

optimization (Fig. 5a). The measured data (i.e., the power

conversion efficiency from solar cells) were fitted with an SVM
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to visualize the effects of experiment parameters on the device

performance. In the second (subsequent) round of parameter

evaluation (Fig. 5b), the ranges of each of the parameters were

narrowed, and the corresponding data were fitted with the SVM to

find the optimum value of the output performance (Fig. 5c). These

ML fitting methods can be beneficial in saving time and resources

to design the FET-based sensors.

2D monolayers of semiconducting transition metal dichalcogenides

(TMDCs) are considered promising sensing materials owing to

their atomic structure, allowing efficient conversion of binding

effect at the surface into electrical signals[35]. Due to weak

interlayer Van der Waals interaction, a bulk type of TMDCs is

mechanically or chemically exfoliated into a monolayer. The

electrical characteristics of monolayer TMDCs, which potentially

affect the sensor performance, can be modulated with two

common methods: 1) introduction of defects on the surface [36]

and 2) stacking of layered material[37]. Defects in 2D materials

are highly sensitive to local conditions, making them suitable for

chemical and biological sensing [38]. Frey et al. identified optimal

point defects in 2D materials using a combination of ML

algorithms and first-principles calculations (Fig. 5d) [39]. In the

study, deep transfer learning was used to predict critical host

material properties (i.e., band gap and formation energy) and

identify promising hosts. A random forest ML model was then

trained to predict the defect structure properties that are referenced

to first-principles calculations. Although ideal candidate defects

were predicted for quantum emission and resistive switching, a

similar ML-enabled design will be utilized for sensor applications.

Vertically stacked 2D layers allow making a new type of hybrid

material with unprecedented electronic, transport, optical, and

mechanical properties [37,40]. Bassman et al., utilized ML

algorithms for accelerated design of layered materials [41].

Gaussian process regression model was used to predict material

properties (i.e., the electronic band gap and conduction/valence

band dispersions) of an input heterostructure (e.g., MoSe2WTe2

MoS2), and a type of active learning called Bayesian optimization

was then used to design the optimal heterostructure. The models

have potential to discover ideal 2D heterostructure candidates for

sensor applications.

Organic FETs (OFETs) have the advantage to be used as

sensing platforms owing to their mechanical flexibility, solution-

based low-cost fabrication, and easy chemical functionalization

[42]. In the work conducted by Lee [43], ML was trained with the

experimentally available data on electron mobility of n-type

OFETs to identify the effects of electronic properties on electron

mobility. Two ML algorithms, random forest and gradient

boosting, were used to construct the ML regression models based

on the dataset consisting of input variables (i.e., HOMO levels and

LUMO levels) and target variable (i.e., electron mobility). With

the fact that the electron mobility is directly related to the current

signal of FET-based sensors [33], improving the electronic

mobility of FETs via ML algorithms can contribute to a design of

sensitive FET-based sensors.

5.2 Receptor design 

Finding a specific receptor for a target molecule helps design

sensors with better sensitivity and selectivity. Engineered catalysts,

enzymes, and receptors predicted by ML enable enhanced chemical

and biological reactions on the sensor surface, which is further

amplified with sensitive electronic devices mentioned in Section

5.1. Compared with widely used strategies for enzyme

engineering such as model-driven rational design and directed

evolution, this ML-based design can predict new, previously

unseen but promising enzymes, by analyzing the patterns in the

collected data [44]. In the study conducted by Song et al., ML-

based classification is used to discover aptamers, a class of single

strand DNA/RNA capable of specific molecular recognition of

their targets, with high accuracy and efficiency [45]. Design of

aptamers with ligand-induced conformational change near the

FET surface is critical to overcome limitations in detection of

Fig. 5. Sensor design based on ML. Mean power conversion effi-

ciency (PCE) of the solar cells from the first (a) and second

(b) rounds of optimization [34]. Inset: An example of fac-

torial sampling in 2-factor 4-value system showing Latin

square. (c) Radial basis function visualization of measured

cell power conversion efficiency versus thickness and donor

concentration of the solar devices. (d) Schematic of the entire

workflow for design of point defects in 2D materials. Deep

transfer learning is used to predict 2D host material properties

and identify promising hosts, a random forest ML model is

trained to predict defect structure properties, and finally ideal

candidate defects are predicted [39].



Jae-Hyuk Ahn

J. Sens. Sci. Technol. Vol. 30, No. 1, 2021 8

small target molecules [46].

6. CONCLUSIONS

Electronic transduction of chemical and biological reaction

enables an FET to possess label-free and sensitive detection as a

sensor. ML with the ability to learn from data and predict output

allows researchers to analyze complex signals generated by

sensors and design high-performance sensors. Supervised and

unsupervised ML algorithms, including PCA, SVM, and ANN,

were utilized to classify unknown substances and quantify the

concentration of target molecules. ML combined with DoE is also

used to predict the electrical characteristics of electronic devices

for accelerating the sensor design by saving time and resources. A

similar ML-based approach can be applied to receptor design to

achieve high sensitivity and selectivity.

There remain several challenges of the combination of sensors

and ML. Usually, data are analyzed using ML algorithms installed

on a computer, outside the sensor platform, limiting the sensor

portability. To address this problem, innovative methods for

seamless integration of sensors and ML hardware should be

developed [47,48]. Sufficient “big data” is required to train ML,

and it is quite well worked out in gas sensing experiments where

the reversible reaction allows chemical sensors to be used many

times. A biosensor based on reversible reaction between receptors

and targets is considered a sensing platform suitable for ML-based

analysis to collect sufficient data for training, with limited time

and resources [27].
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