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Abstract

Experts have designed popular and successful model architectures, which, however, were not the optimal option for different sce-

narios. Despite the remarkable performances achieved by deep neural networks, manually designed networks for classification tasks are

the backbone of object detection. One major challenge is the ImageNet pre-training of the search space representation; moreover, the

searched network incurs huge computational cost. Therefore, to overcome the obstacle of the pre-training process, we introduce a net-

work adaptation technique using a pre-trained backbone model tested on ImageNet. The adaptation method can efficiently adapt the

manually designed network on ImageNet to the new object-detection task. Neural architecture search (NAS) is adopted to adapt the

architecture of the network. The adaptation is conducted on the MobileNetV2 network. The proposed NAS is tested using SSDLite

detector. The results demonstrate increased performance compared to existing network architecture in terms of search cost, total number

of adder arithmetics (Madds), and mean Average Precision(mAP). The total computational cost of the proposed NAS is much less than

that of the State Of The Art (SOTA) NAS method.
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1. INTRODUCTION

Modern deep neural networks have numerous types of different

layers with varied connections between layers. For example, skip-

connection and its sub-modules are used to promote convergence

of models. Currently, most deep neural network architectures are

developed based on human experience, through a long and tedious

process of trial and error. With the growing interest in neural

architecture search (NAS), attempts have been made to automate

the process of identifying effective architectures for a given deep

learning problem. NAS can be defined as a technique for

automating the design of artificial neural networks (ANN) [1].

The early concept of NAS included defining a search space,

search strategy, and performance estimation strategy. Fig. 1 shows

the concept of NAS, which is a gradient-based method for

identifying good architectures [2]. The concept is based on the

observation that the structure and connectivity of a neural network

can be typically specified by a variable-length string.

NAS is computationally expensive and time-consuming, and

uses 450 GPUs for up to 3–4 days. Meanwhile, efficient neural

architecture search (ENAS) has been proposed, which is a fast and

inexpensive approach for automatic model design [3]. The main

contribution of ENAS was to improve the efficiency of NAS by

sharing parameters among child models, using much fewer GPU-

hours than existing automatic model design approaches. The best

existing architecture search algorithms are computationally

demanding despite their outstanding performance.

For instance, obtaining a state-of-the-art architecture for CIFAR-

10 and ImageNet required 2000 GPU days of reinforcement

learning (RL), or 3150 GPU days of evolution [4,5]. Moreover, in

all the popular existing approaches, architecture search is treated as

a black-box optimization problem over a discrete domain, which

requires a large number of architecture evaluations. Therefore,

differentiable architecture search (DARTS) was a method proposed
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Fig. 1. Concept of NAS [2].
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for efficiently searching architecture, which tackled the problem

differently. Its main contribution was to relax the search space to

be continuous, instead of searching over a discrete set of

candidates, such that the architecture could be optimized with

respect to its validation set performance by gradient descent [6].

Fig. 2 shows the concept of DARTS.

All the aforementioned architectures are highly successful in

computer vision tasks, and image classification has always served

as a fundamental task for NAS. Hence, networks designed and

pre-trained on classification tasks are commonly used. However,

the object-detection task requires both localization and classification

information for each instance, and here, the backbone architecture

influences the performance. Ultimately, the architecture designed

for image classification may not perform well for detection. To

overcome this problem, some existing works proposed ways to

improve the backbone architecture [7-10].

Pre-training is an unavoidable and costly procedure. However,

training from the beginning on the target task takes numerous

iterations when compared with fine-tuning from a pre-trained one.

As ImageNet pre-training has been a standard rule for many

computer vision tasks, there are plenty of trained models available

[11]. To take advantage of these models, an NAS model was

proposed based on the parameter adaptation paradigm. The

proposed NAS could adapt the parameters of the manually

designed base network, which is pre-trained on ImageNet or

MobileNetV2 [12]. The base network is expanded to the super

network, which is essentially the search space in the proposed

NAS. Thus, this architecture search could obtain the optimal

target architecture for detection. With this method, there is no

need for pre-training on a large-scale dataset. The effectiveness of

the proposed NAS is tested via experiments on detection tasks. 

2. PROPOSED NAS

MobileNetV2, the most commonly used network for designing

search spaces in NAS methods, is adapted as the base model. To

adapt the network for the detection task, the two architecture

elements (that is, kernel size and depth) of the network model are

fine-tuned. Fig. 3 shows the overall framework of the proposed

NAS, wherein the base network is expanded to its super-network

for searching. Further, the parameters of the base network are

added to the final architecture. The framework is composed of

two important aspects: (1) remapping the parameters of the base

model, and (2) network adaptation.

2.1 Remapping the parameter of base network

The paradigm focuses on mapping the parameters of the base

model to another one. The number of inverted residual blocks

(MBConvs) is adjusted in each step of the network.

Then, the parameters of the base network Ns can be denoted as

{W(1) s,W(2) s, . . . ,W(l) s }, and similarly, the parameters for the

corresponding stage with m layers in the new network, Nn, can be

denoted as {W(1) n, W(2) n, . . . , W(m) n }. This implies that the

parameters of layers in Nn, which also exist in Ns, are simply

copied from Ns. All the parameters of new layers are copied from

the last layer in Ns, as expressed in the following equation:

f(i) = min(i, l), Wn (i) = Ws (f(i), ∀1 ≤ i ≤ m (1)

The kernel size of 3 × 3 is commonly used in manually

designed networks. A larger kernel size is introduced in the

adaptation process to expand the receptive field and capture

abundant features in the detection task. To expand the 3 × 3 kernel

to a larger size, its values are assigned to the parameters of the

central 3 × 3 region in the large kernel. The other regions

Fig. 2. Overview of DARTS [6] ; (a) Operations on the edges are ini-

tially unknown, (b) Continuous relaxation of the search by

placing a mixture of candidate operations on each edge, (c)

Joint optimization of mixing probabilities, and network

weights by solving a bilevel optimization problem, and (d)

Inducing the final architecture from the learned mixing prob-

abilities. 

Fig. 3. Framework of proposed NAS.
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surrounding the central part are assigned as 0. W3x3 denotes the

parameters of the original 3 × 3 kernel and Wkxk denotes the

parameters of the larger kernel k × k. The following equation

defines the remapping process of the kernel:

, (2)

where h,w denote the indices of the spatial dimension.

2.2 Network Adaptation

The adaptation process is divided into three steps. First, the base

network is expanded to a super network, which is an actual

representation of the search space in the network adaptation

process. Next, the DARTS method is used to implement network

adaptation on the architecture level to obtain the final architecture.

Finally, the parameters of the final architecture are adapted, and

the final network is obtained. The parameter remapping discussed

in Section 2.1 is implemented before the final architecture. For the

MBConv layer, kernel settings of {3,5,7} and {3,6} expansion

ratios are implemented. Similar to most differentiable NAS

methods, the search space relaxes every

layer as a weighted sum of all candidate operations, as derived

by the following equation:

(3)

The proposed NAS adapts the MobileNetV2 base network to a

common use detection model, SSDLite, also known as a

lightweight detector [13].

3. RESULTS AND DISCUSSION

An ImageNet pre-trained MobileNetV2 model is used for the

proposed NAS, and an object detection task is performed. The

experiment is conducted on the MS-COCO dataset [14]. In the

search process of architecture adaptation, 50% of the data is

randomly sampled from the original set for validation. The input

images are resized to 320 × 320. A standard RMSProp optimizer

with a weight decay of 4 × 10-5 is used for operation weights in the

search process. For the first 500 iterations, the learning rate is set

from 0 to 0.03. After that, the learning rate is decayed by 0.1 at

22 epochs. The architecture optimization begins at 20 epochs. λ is

set to 0.2, and τ is set to 10 for the loss function, wherein λ denotes

the cross-entropy loss and τ term controls the multiplication and

addition arithmetics. The search process takes 24 epochs in total,

that is, 76 h on a single TITAN Xp. Table 1 lists the results on the

COCO dataset, with a comparison to the literature DetNas [10] in

terms of a number of parameters, λ, MAdds, and detection

accuracy. The proposed NAS proves to be lightweight, using only

4.6M parameters, which is far less than those of DetNas.

However, the mAP is lower than the existing one. The MAdds

also exhibits comparable results, reducing the operations to 1B

only.

Table 2 shows the comparison of computational cost for the

object detection task. The experiments using the proposed NAS

are conducted on a single TITAN Xp GPU. Here GDs denotes the

number of GPU days. The MMDetection framework is used

which is an open source object detection toolbox based on

PyTorch.

Fig. 4 shows the architecture found after the search process,

where Kx_Ey denotes the kernel size of the depthwise

convolution is ‘x’ and expansion ratio is ‘y’.

Fig. 5 shows the visualization of the searched architecture on

 

 

Table 1. Object detection results on MS-COCO.

Methods Params MAdds mAP(%)

DetNAS 13.41M 133.26B 33.3

Proposed NAS 4.6 1B 25.3

Table 2. Comparison of computational cost on the object detection

tasks.

Methods Total cost
Super Network 

(search cost)

Final 

network

DetNAS 68GDs 44GDs 24GDs

Proposed NAS 9GDs 3GDs 6GDs

Fig. 4. Obtained architecture.

Fig. 5. Proposed NAS on SSDLite.
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the SSDLite framework, where MB denotes the inverted residual

block proposed in MobileNetV2.

Fig. 6 shows the visualization of object detection results on the

MS-COCO validation dataset.

4. CONCLUSIONS

In this study, the existing popular NAS methods are reviewed,

and an efficient NAS method for object detection tasks is

proposed. However, the method is limited, and is not explored in

different frameworks. Our main contribution is taking complete

advantage of the models pre-trained on ImageNet. The manually

designed network is adopted as the base model. The strategy of

remapping the parameters fully utilizes the base model, which, in

turn, accelerates the overall network efficiently. With this method,

researchers can quickly adapt other manually designed networks

to various other tasks. In future, it could be more beneficial to

perform other computer vision tasks by introducing various

adaptation techniques.
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