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Abstract

LiDAR, one of the most important sensing methods used in mobile robots and cars with assistive/autonomous driving functions, is

used to locate surrounding obstacles or to build maps. For real-time path generation, the detection of potholes or puddles on the driving

surface is crucial. To achieve this, we used the coordinates of the reflection points provided by LiDAR as well as the intensity infor-

mation to classify water areas, which was achieved by applying a linear regression method to the intensity distribution. The rationale

for using the LiDAR index as an input variable for linear regression is presented, and we demonstrated that it is not affected by errors

in the distance measurement value. Because of LiDAR vertical scanning, if the reflective surface is not uniform, it is divided into dif-

ferent groups according to the intensity distribution, and a mathematical basis for this is presented. Through experiments in an outdoor

driving area, we could distinguish between flat ground, potholes, and puddles, and kinematic analysis was performed to calculate the

maximum width that could be crossed for a given vehicle body size and wheel radius.
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1. INTRODUCTION

LiDAR is used in various devices such as mobile robots and

autonomous cars for obstacle detection, localization, map

generation, and simultaneous localization and mapping (SLAM).

By measuring the time for laser light to reflect and return, LiDAR

can calculate the distance to the reflection point. 3D LiDAR,

which measures the omnidirectional range in the horizontal

direction and a limited range in the vertical direction at high

speeds, has been commercialized and, despite being relatively

expensive, has become an essential sensing method. For general

road driving, [1] determined the border of a road using LiDAR,

and [2] generated road models and maps by fusing inertial

navigation devices, GPS information, and LiDAR. Intensity,

which is another measurement of LiDAR, is the intensity of the

laser reflected from the measurement point, and the reflectivity is

determined by the component of the surface from which the light

is reflected. LiDAR intensity measurements are used to

distinguish soil, tree areas, and river or stream areas using special

LiDAR installed on aircraft when creating aerial maps [3,4]. For

autonomous driving, [5] described a study to determine paved and

unpaved surfaces based on the dispersion value of the intensity of

LiDAR laser beams. In [6], the reflectivity according to the

distance of a covered road was measured, and a correction

equation was derived using the reflectivity of soil, cement, grass,

and asphalt. Ref. [7] measured the reflectivity of drivable roads,

created a model for the drivable area, and continuously updated it

to create a drivability probability map.

For outdoor driving robots, the driving road may contain

puddles or potholes even on paved roads. The presence of water

affects the reflection of the laser, and the accuracy of the distance

measurements decreases owing to diffuse reflection from the

water. Therefore, if the presence of water can be determined, the

accuracy is expected to decrease. Additionally, detecting water

puddles and determining whether they can be passed are essential

for creating a real-time path.

In this study, we performed an experiment in an environment

with a water reservoir and developed a method for estimating the

exact location of a water puddle through changes in LiDAR

intensity measurements. Based on the general characteristics of

intensity, we propose a group segmentation method that uses the

scan order rather than the measurement position of the reflective

surface, assuming a change in intensity as a linear model. This

1Department of Smart Machine Technology, Korea Institute of Machinery and

Materials

156 Gajeongbuk-Ro Yuseong-Gu, Daejeon, 34103, Korea
2Department of Mechanical and System Design Engineering, Hongik

University

94, Wausan-ro, Mapo-gu, Seoul, 04066, Korea
+Corresponding author: sooyong@hongik.ac.kr

(Received: Sep. 1, 2023, Revised: Sep. 20, 2023, Accepted: Sep. 25, 2023)

This is an Open Access article distributed under the terms of the Creative

Commons Attribution Non-Commercial License(https://creativecommons.org/

licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution,

and reproduction in any medium, provided the original work is properly cited.

https://crossmark.crossref.org/dialog/?doi=10.46670/JSST.2023.32.5.267&domain=http://jsstec.org/&uri_scheme=http:&cm_version=v1.5


Minyoung Lee, Ji-Chul Kim, Moo Hyun Cha, Hanmin Lee, and Sooyong Lee

J. Sens. Sci. Technol. Vol. 32, No. 5, 2023 268

was experimentally verified in an outdoor environment

comprising puddles, potholes, and flat areas. In addition,

geometric analysis was performed to determine the maximum

width that a mobile robot can pass through in the presence of

puddles or potholes rather than continuous terrain.

2. LiDAR Data Segmentation

2.1 Reading a Water Surface using LiDAR

To check the accuracy of the distance measurements using

LiDAR when a water puddle exists, we configured an

experimental device as shown in Fig. 1. A reservoir filled with

water was placed on a floor, a plate with a square hole was placed

on top of the reservoir, and a LiDAR sensor was installed pointing

towards the center of the water surface. At the center of the water,

the angle of incidence of the laser beam was 0°, and the angle of

incidence increased in the left and right directions. The change in

the accuracy of the measurement value of the angle of incidence

was confirmed by moving the position of the water tank

Fig. 2 shows the surface coordinate x, y from LiDAR. The right

and top directions are the +X and +Y, respectively. Although the

distance from the center to the water was 0.6 m, inaccurate values

were output in the water surface area. More importantly, many

measurements had an output of 0 because of a failure to measure

properly. In this study, the goal was not to accurately measure the

distance to the water surface but to recognize the area with water.

3D LiDAR is designed to scan a certain range of vertical and

omnidirectional horizontal surfaces. For Ouster OS1 LiDAR, which

was used in the experiment, the horizontal plane is scanned with

2048 channels, and the vertical plane is scanned with 128 channels

over a 45° range. As shown in Fig. 3, an index was used to

distinguish each measurement point; the vertical surface had an

output format in which the vertical index j increased from top to

bottom, and the horizontal surface had an output format in which the

horizontal index i increased clockwise when viewed from above.

In this study, to increase the measurement range and resolution

of the vertical plane, we rotated the LiDAR 90° and fixed it, as

shown in Fig. 1, and the resolution of the vertical plane was used

as 2048 channels. In this paper, the LiDAR index is denoted as i,

as shown in Fig. 3. LiDAR measures the distance to the laser

beam reflection point (R), and outputs the coordinates of the

reflection point (x, y, z) with respect to the LiDAR origin

calculated internally using Eq. (1).

(1)

The computation time is reduced and the sampling frequency is

increased by storing the values of 

for each scan position in advance as constant values, and the

coordinate values are output by multiplying them with the

measured distance value . If the distance value is 0 owing to a

measurement error, all the coordinates of the reflection point are

output as 0. Although such errors rarely occur during LiDAR

scanning, we confirmed that many errors occur when scanning the

water surface. Therefore, the coordinate values may include

   , , cos cos , cos sin , sinx y z R R R    

cos cos ,cos sin ,sin    

R

Fig. 1. Experimental setup; (a) LiDAR, plate and box with water. (b)

Photo 

Fig. 2. LiDAR measurement 

Fig. 3. LiDAR outputs index 
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significant amounts of errors; therefore, the intensity information

is expressed based on the index value of the LiDAR instead, as

shown in Fig. 4. In the figure, when the index value is 1024, the

laser ray hits the center of the water surface. The intensity is

relatively small in the area with water, and differences are

observed in the plate part above the water tank located on the left

and right sides and in the floor part on both sides. This paper

presents a method for differentiating laser reflection surfaces using

intensity information.

2.2 LiDAR Intensity Output Segmentation

The basic principle of LiDAR, which measures the distance to

a reflection point, involves calculating the distance from the time

required for the laser light to reflect and return. LiDAR provides

not only the coordinates for each measurement point but also

information such as intensity and reflectivity.

Fig. 5 shows the parameters associated with LiDAR installed at

a height of h above the ground.

The index value increases from top to bottom when scanning

the vertical plane, and this is the movement position of the LiDAR

internal mechanism, which can be assumed to be accurate. The

angle changes for each index are set as equal; therefore, the value

of  in the figure is constant. The distance from the LiDAR

origin corresponding to index  to the measurement point has the

following relationship:

(2)

The intensity is affected by the ambient lighting, reflector

material, angle of incidence, and distance. For a surface with the

same reflectivity, the intensity of the light reflected by the laser

beam is inversely proportional to the square of the distance.

(3)

For the main area of interest, which is the lower half of the front

when the LiDAR is installed at the height , the

relationship between the index value and the inverse squared

distance is shown in Fig. 6. We can reasonably assume that ,

shown in blue, has a linear relationship with index i. The red line

in the figure represents a linear relationship with the index.

Because the intensity is proportional to , and  has a linear

relationship with i, the intensity is assumed to have a linear

relationship with i for the same reflector material, and the

measured intensity is analyzed using the linear regression method.

In the linear regression method, the relationship between the

input variable  and output variable  is expressed

in the form of Eq. (4), where  is the output value obtained using

the linearized equation.
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Fig. 4. LiDAR intensity output

Fig. 5. Parameters for LiDAR sensing

Fig. 6. Calculated  versus index,  and linear regression results
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(4)

The parameters a, b are obtained by the following minimization

method.

(5)

Using the expressions defined in Eqs. (6)-(8),

(6)

(7)

(8)

where  and ,  in Eq. (4) can be

obtained using Eq. (9) and Eq. (10), respectively:

(9)

(10)

To explain the concept of group segmentation, if the distribution

of  consisting of two groups with a linear relationship is

shown in Fig. 7.

The method of segmenting data into two groups involves

finding values that classify one group of ranges 

and the other group of ranges , which is an

optimization that minimizes the objective function in Eq. (11).

(11)

where,  is the output calculated using the equation after

linearizing the group consisting of , and 

corresponds to the group consisting of . The expected

optimization results are shown in Fig. 8. The dotted lines represent

linear equations for each group.

To improve the speed of the optimization process, we use the

relationship in Eq. (12) to calculate Eq. (11).

(12)

Because the number of groups cannot be specified in advance

for the measured values of the area of interest, the number of

groups is also determined in the optimization process. This

method is based on the residual error (sum of squares error) of the

entire dataset. For example, if the residual error divided into two

groups is smaller than the residual error when expressed as a

single group using a linear regression equation, it is divided into

two groups. However, as the number of groups increases, the

residual error naturally decreases. Thus, a penalty that increases

linearly with the number of groups is used.

With this method, the experimental results shown in Fig. 3 were

segmented into five groups, as shown in Fig. 9.

The intensity changed depending on the type of reflection

surface. The results show the water surface in the center, the left

and right sides of the center, which were the plates above the

reservoir, and both ends of the floor.

2.3 Experiment on Various Ground Conditions

Potholes or puddles in front of the driving direction must be

detected using LiDAR when driving on rough outdoor terrain.
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Fig. 7. Sample data for segmentation

Fig. 8. Data segmentation results for two groups.
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Thus, three experimental environments, as shown in Fig. 10(a)

were studied: a water puddle in which the reservoir was buried, a

pothole after the reservoir was removed (Fig. 10(b)), and the

pothole filled with soil to flatten it (Fig. 10(c)).

First, for the puddle, the coordinates of the reflection point

among the LiDAR output values for one vertical plane are shown

as circles in Fig. 11. The water puddle was located 1.37 to 1.73 m

ahead, the water depth was 0.08 m, and the height of the LiDAR

origin was 0.6 m above the ground. The measurements of the

reflected portion of the water surface did not indicate the location

or depth of the water, and many measurements repeatedly had

values of 0, as shown in Fig. 11. This was a measurement error in

which the measured distance was 0, thereby the coordinate value

calculated from this was an output of 0.

The results of group segmentation using linear regression for

the output intensity and index values are shown in Fig. 12. The

environment was divided into three groups: ground, central water,

and ground.

Fig. 13 shows the location of the water puddle, with the

coordinate values belonging to the central group highlighted in

green.

Fig. 9. Segmentation into five groups based on intensity 

Fig. 10. Experimental environment: (a) puddle, (b) pothole, (c) flat

surface

Fig. 11. LiDAR output (x, y) for an environment with a puddle

Fig. 12. Segmentation of the LiDAR intensity output for an envi-

ronment with a puddle

Fig. 13. Identified puddle in the LiDAR output (x, y)
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Second, after the reservoir was removed, the intensity of the

LiDAR measurements for the pothole formed a single group, as

shown in Fig. 14.

Finally, the intensity measured after filling the pothole with soil and

flattening it formed a group, as shown in Fig. 15, similar to the case with

the pothole. We confirmed that only the cases in which water was

present could be segmented into groups based on intensity values.

A method of detecting a pothole using distance R was published

in [8]. For the three cases above, R with respect to the index is

shown in Fig. 16.

Flat ground and potholes can be recognized by detecting

changes in [8]. For puddles, some of these values are 0 in the area

reflected on the water, but by classifying groups based on

intensity, the ground and existence of puddles can be confirmed.

Measurements of intensity were performed on various surfaces

including the asphalt, the brick and the rubber mat. Fig. 17 shows

the results. We verified that a uniform surface may be modeled as

linear function, while the brick surface shows larger variance. 

The Lidar has an internal 3-axis accelerometer and the update rate

is 100 Hz. By monitoring the vertical acceleration, we can detect any

Fig. 14. LiDAR intensity output for an environment with a pothole

Fig. 15. LiDAR intensity output for flat surface

Fig. 16. Index versus distance outputs for the puddle, pothole, and

flat surface

Fig. 17. Various surfaces: (a) asphalt, (b) brick, (c) rubber mat (d)

intensity
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abnormal vertical shock. This may cause incorrect point cloud

reading. However, the intensity reading may not be directly affected.

3. Geometry Analysis

The mobile robot used in the experiment was a WeGo-ST from

WeGo Robotics, which was equipped with a LiDAR on the upper

front part.

When driving forward and a puddle of water is detected ahead,

the possibility of passing through it must be determined, which is

essential for planning a real-time path. The main dimensions

shown in Fig. 18 are a wheel radius of r = 0.165 m, distance

between the wheel axles of  = 0.498 m, distance from the front

wheel axle to the endpoint of the front end of the car body of 

= 0.216 m, distance between the wheel axle and the bottom of the

car body of  = 0.023 m, and height from the bottom of the car

body to the ground of  = 0.142 m.

We assumed that the torque output of the drive motor and the

friction between the wheels and the ground were sufficiently large

and that the height of the ground surface after passing through the

puddle was the same as the height before passing through. The

height between the lowest part of the front part of the car body and

the ground was f, which could pass the pothole only if , as

shown in Fig. 20. As shown in Fig. 21, a geometric relationship

was obtained when the bottom of the front end of the car body

touched the ground, when . A wheel whose radius is 

spanning a pothole width of  is shown in Fig. 22. The angle 

related to the change in height of the center of the wheel axis ,

is derived using Eqs. (13) and (14):

(13)

(14)

From these two equations,  is expressed in terms of wheel

radius  and width  as in Eq. (15).

(15)

The tilt angle  of the car body due to the descent of the wheel

axis by  is

(16)

The amount of change in height at the bottom-end point of the

L1

L2

c1

c2

f 0

f 0= r

p 

s

 1 coss r   

1
sin

2

p

r
 

 
  

 

s

r p

1
1 cos sin

2

p
s r

r



   
     

   



s

1

1

sin
s

L




 
  

 

Fig. 18. Mobile robot WeGo-ST

Fig. 19. Vehicle Parameters

Fig. 20. Clearance: f when successfully crossing a pothole

Fig. 21. Conditions under which the front end of the vehicle hits the

ground

Fig. 22. Change in height of the wheel center
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front car body is . Therefore, the height f

between the lowest part of the front part of the car body and the

ground, as shown in Fig. 20, is represented by Eq. (17).

(17)

Substituting the car body dimensions used in the experiment,

the maximum width that can be crossed safely is when the value

of f obtained by setting Eq. (17) is positive, which is a function of

the width of the puddle p. Using Eq. (17), the change in value f

according to the change p is shown in Fig. 23.

If both wheels are placed on the same level of the ground

, then  as predicted in Fig. 19. If the

width is less than 0.301m, the vehicle body can cross without

colliding with the ground. The above analysis applies equally to

puddles and potholes. A study on whether passage is possible

when a curb exists was published in [8].

4. CONCLUSIONS

In this paper, we introduce a method of detecting puddles on a

driving surface using the intensity of LiDAR measurements.

Using the basic characteristics of light intensity, the intensity

measurements can be segmented into groups using the linear

regression method to distinguish water puddles on the driving

surface from those on the ground. Even when a partial error

occurs in the measured distance value owing to the characteristics

of the water surface, the intensity provides sufficient information

to enable group segmentation. If potholes or puddles are present

on a planned driving route, determining whether they can be

crossed is essential for real-time path planning. An analysis was

performed to determine the maximum width that could be crossed

for the given dimensions of a robot's body and wheels. In addition

to the intensity, the reflectivity, another LiDAR measurements,

will be useful for identifying the surface.

ACKNOWLEDGMENT

This research was supported by the Basic Research Project of

Korea Institute of Machinery and Materials (Project ID: NK242I).

REFERENCES

[1] P. Sun, X. Zhao, Z. Xu, R. Wang, and H. Min, “A 3D

LiDAR Data-Based Dedicated Road Boundary Detection

Algorithm for Autonomous Vehicles”, IEEE Access, Vol. 7,

pp. 29623-29638, 2019.

[2] K. Wang, N. Jiasheng, and L. Yanqiang, “A Robust LiDAR

State Estimation and Map Building Approach for Urban

Road”, Proc. of 2021 IEEE 2nd International Conference on

Big Data, Artificial Intelligence and Internet of Things Engi-

neering (ICBAIE), pp. 502-506, Nanchang, China, 2021.

[3] L. Gong, Y. Zhang, Z. Li, and Q. Bao, “Automated Road

Extraction from LiDAR Data Based on Intensity and Aerial

Photo”, Proc. of 2010 3rd Int. Congress on Image and Signal

Processing, pp. 2130-2133, Yantai, China, 2010.

[4] M. Okhrimenko and C. Hopkinson, “A Simplified End-

User Approach to Lidar Very Shallow Water Bathymetric

Correction”, IEEE Geosci. Remote Sens. Lett., Vol. 17, No.

1, pp. 3-7, January, 2020.

[5] K. Higashimoto, H. Fukushima, K. Kamitani, and N. Chujo,

“Identification of Road Surface Condition on Undeveloped

Roads: Aiming for Remote Car Driving”, Proc. of 2021

IEEE 10th Global Conference on Consumer Electronics

(GCCE), pp. 777-781, Kyoto, Japan, 2021.

[6] J. Kim, K. Kwak, and K. Bae, “Experimental Analysis and

Internal Calibration of the 3D LIDAR Reflectivity”, J. Inst.

Control Robot Syst., Vol. 23, No. 7, pp. 574-582, 2017.

[7] J. Kim, S. Ahn, J. Min, and K. Bae, “Analysis of Tra-

versable Candidate Region for Unmanned Ground Vehicle

Using 3D LIDAR Reflectivity”, Transact. Korean Soc.

Mech. Eng. A, Vol. 41, No. 11, pp. 1047-1053, 2017.

[8] M. Lee, M. H. Cha, H. Lee, and S. Lee, “Lidar Mea-

surement Analysis for Detection of Down-Curbs and Up-

Curbs”, J. Inst. Control Robot. Syst., Vol. 29, No. 2, pp.

126-134, 2023.

 1 2
sinL L 

1

1

2

1

11 2

1

1 cos sin
2

( ) cos sin

        1 cos sin
2

p
r

r
f p c

L

L L p
r

L r







     
     

        
  

  
  

    
    

   

 0p 
2

0.142f c 

Fig. 23. Calculated f with respect to the hole width p


	Identifying Puddles based on Intensity Measurement using LiDAR

