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Abstract

Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the

shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a

promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity mea-

surement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves train-

ing on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML

presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detec-

tion, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector

Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex

clinical data.

Keywords: Biosignals, Wearable sensors, Machine learning in healthcare, Parkinson's disease detection, Clinical data analysis,
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1. INTRODUCTION

Biological signals, also referred to as biosignals originating

from the human body, carry vital information regarding the

physiological state of the body. This information is useful for

assessing a range of illnesses, functional difficulties, and cognitive

impairments such as Parkinson's disease, dementia, irregular

walking patterns, multiple sclerosis, rapid eye movement (REM)

sleep disorders, and various neurological disorders [1-3]. Early

detection of these medical conditions is crucial for prompt

diagnosis and implementation of specific treatments to prevent

them from becoming life-threatening. Fig. 1 illustrates the

visualization of biosignals in humans along with their

corresponding measurements. 

Although an early and accurate diagnosis is vital, most clinical

assessments conducted today rely on direct observations and

patient self-reports [4,5], which are susceptible to subjectivity and

lack practical monitoring tools. These limitations must be

overcome to develop a noninvasive and accurate method for

collecting patient data, assessing disease states, evaluating the

impact of medical interventions, and continuously monitoring

patient conditions in actual settings [3]. Such clinical tools can be

developed using machine learning (ML) techniques. ML

algorithms have been applied to wearable sensor data in

healthcare in three primary areas: (1) detecting abnormal

movements, (2) identifying diseases, and (3) assisting in

rehabilitation and therapy [6].

Critical information on the severity of disorders such as

Essential Tremor (ET), Parkinson's disease (PD), and

osteoarthritis in the knees can be obtained from irregularities in

bodily movements [1,7-10]. As another example, in the case of

autism [11], children’s learning of new skills and the use of

acquired skills are negatively affected by abnormal body

movements. In such cases, it is critical to identify patients'

locomotion impairments to enhance their quality of life. By

applying ML to wearable sensors, these abnormalities can be

automatically detected in real time. This can be achieved using a

classifier to create a general decision boundary that separates

abnormal movement classes from normal movement classes in

high-dimensional input data. Alternatively, the distribution of

normal movements can be observed using anomaly detection

techniques, and any significant deviation from this distribution

can be classified as a movement anomaly.

Disease identification involves assessing disease severity, which
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can be represented by clinical scores [12]. For instance, the

assessment of atypical motor movements can be used to gauge

disease severity in patients with Parkinson's disease who suffer

from motor disturbances. In existing literature, ML algorithms,

including classification and regression models, are predominantly

used on wearable sensor data to measure disease severity and

body abnormalities [7,9,13-15]. 

Rehabilitation is an effective means of improving

functionality and reducing disability in individuals with

illnesses. Therapy sessions in clinical settings can be long,

expensive, and impractical. Therefore, developing a remotely

operable system for home-based rehabilitation is necessary [6].

This system can built using wearable sensor technology,

enabling real-time data collection. With such a system, patients

can receive real-time feedback and rehabilitation can be

continuously monitored. ML algorithms provide the possibility

of measuring indicators of rehabilitation progress and

identifying patient activities [16].

2. MACHINE LEARNING ON WEARABLE 

SENSORS

ML represents a subset of Artificial Intelligence (AI) that

provides computational tools for parameter learning based on

observed data, referred to as training data. As they relate to

wearable sensor technologies, these input data usually comprise

multichannel time-series data that record movements and/or

physiological signals from body-attached sensors. During the

learning process, an objective function specific to a task is

optimized to minimize or maximize the performance metrics.

Task definition varies depending on its intended use; for instance,

it may involve regression to predict continuous clinical metrics,

such as symptom severity or physical/cognitive loads, or

classification to identify categorical body states in patients

[17,18]. The process of predicting the unobserved data using the

learned parameters of a model is called inference.

Fig. 1. Several biosignals in humans and their measurements. (a) Schematic of the human breathing mechanism, (b) human breathing mea-

surements at different breathing conditions by Wearable Triboelectric Nanogenerator (W-TENG), (c) the frequency of the breathing with

time is plotted using Short Term Fourier Transform (STFT) at the different breathing rates. Another example is shown in (d) for mon-

itoring of arterial pulse by W-TENG, (e) arterial pulse monitoring by W-TENG, and (f) the STFT plot visualization. For elderly health

monitoring condition, it can be done using (g) a generic mobile health (m-health) using smartphone and set of sensors. Fig. (a) to (f)

reprinted with permission from Ref. [1]. Copyright (2023) John Wiley and Sons, Inc. and Fig. (g) reprinted with permission from Ref.

[3]. Copyright (2022) Elsevier Ireland LTD.
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Numerous studies have focused on the application of supervised

learning to wearable sensor data analysis [19-21]. However,

supervised ML algorithms has a major disadvantage, especially

when used in clinical contexts, because they rely on labeled data.

Labeling data is time-consuming, costly, and subjective in clinical

environments. This drawback highlights the importance of

unsupervised learning, which is located at the opposite ends of the

ML spectrum. In unsupervised learning, tasks such as cluster

identification or anomaly detection within the input data are the

primary focus, and no labeled data are required. For example,

clustering can be used to divide a population into separate

categories based on the wearable sensor-recorded daily activity

patterns [20]. In anomaly detection scenarios [22], the objective is

to identify abnormal patterns in a data signal.

The following sections describe the various ML techniques

frequently used to analyze data from wearable sensors. These

include Support Vector Machines (SVM), Random Forests (RF),

Decision Trees (DT), Neural Networks (NN), and Deep Learning

[23]. Their benefits and limitations in the analysis of complicated

data in clinical settings are also discussed.

2.1. SUPPORT VECTOR MACHINES (SVM)

One type of ML technique used for binary classification

problems is the Support Vector Machines (SVM). SVM works on

the fundamental principle of locating a hyperplane in a

multidimensional space that divides data into two classes. In

essence, a hyperplane is a decision boundary that separates data

points based on their classification. This hyperplane is a line in

two dimensions; however, it may be a plane or a higher-

dimensional surface. The goal of the SVM algorithm is to

determine the optimal hyperplane with the maximum margin,

which is the maximum distance between the data points of both

classes [24]. It is accomplished by limiting the use of support

vectors, which are a subset of the training samples. The data

points in question were the closest to the decision border. The

orientation of the hyperplane was determined by the position of

the support vectors. When data cannot be separated linearly, SVM

employs a technique known as the kernel trick. This process

involves converting the input data into a higher-dimensional

space, such that the data points can be divided using a hyperplane.

Using a linear hyperplane, an SVM can separate nonlinearly

separable support vectors by selecting a kernel function that

considers the data characteristics [25]. SVM is memory-efficient

and particularly useful in high-dimensional domains. However, it

is susceptible to the choice of kernel parameters and do not offer

probability estimation [6]. The SVM  visualization is shown in

Fig. 2.

SVM plays a crucial role in the analysis of wearable sensor data

in the medical field. One application involves assessing symptom

severity in patients with conditions, such as Parkinson’s disease, in

which SVM gauges abnormal motor movement intensity. In

addition, SVM can recognize the activities of patients and

measure indicators of rehabilitation progress [6].

However, selecting a particular application relies on the nature

of the data and the prevailing problems. For example, SVM can

improve the clinical setting performance of wearable medical

devices by obtaining signal features specific to the needs of older

patients, SVM could improve compressive sensing performance

in wearable medical devices [26]. Although supervised ML

algorithms, such as SVM, hold great potential, it is crucial to

recognize that they require labeled data. This presents a barrier in

clinical settings, because data labeling is subjective, expensive,

and time-consuming.

2.2. RANDOM FORESTS (RF) AND DECISION

TREES (DT)

Random Forests (RF) and Decision Trees (DT) are frequently

employed [6]. A supervised ML approach called DT divides the

input space into subgroups by employing a structure such as a

tree. Starting at the root node, it progresses via internal nodes and

leaves based on the attribute-based decision functions. These

functions guide samples through a tree during testing to predict

the class labels [6]. Using an ensemble approach called RF,

multiple DTs were constructed and their respective class modes

were produced. RF is well suited for systems with limited

computational resources owing to its excellent accuracy and short

training time [32]. In the field of medicine, these algorithms help

people manage health problems in Internet of Things (IoT)

Fig. 2. Visualization of SVM.
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healthcare applications [27] and diagnose illnesses such as breast

cancer more effectively [18].

In contrast, quantization optimization methods, such as Tiny

Transfer Learning (TinyTL), can drastically lower the training

memory footprint for efficient on-device learning. To evaluate the

model performance, more research is required that considers

accuracy, latency, and power consumption [32]. Fig. 3 shows RF

and DT visualizations.

2.3. NEURAL NETWORKS (NN)

A feedforward neural network, also known as a multilayer

perceptron (MLP), operates in a hierarchical architecture with

layers of processing nodes. Using weighted links, each layer

establishes connections with the layers below it. To transfer

information from one layer to the next, the neurons in each layer

perform a weighted linear summation followed by an activation

function, such as a sigmoid or tangent hyperbolic. The final layer,

referred to as the output layer, takes inputs from the layers before

transforming them into output values [6]. Network weights were

modified throughout the training phase using a backpropagation

technique. In the forward stage of backpropagation, the network

uses randomly initialized weights to calculate the outputs for the

given inputs. Subsequently, by utilizing the chain rule of partial

derivatives, the errors traverse backward through the network to

fine-tune the interlayer weights when the projected and actual

outputs are compared.

Several studies have reported that Neural Networks (NN) can

be used to analyze wearable sensor data. For instance, one study

utilized an NN model to forecast disease states in patients with PD

based on accelerometer data gathered in both the home and

laboratory environments [28]. Another study applied an NN

model to the time- and frequency-domain features extracted from

physiological and accelerometer sensors to identify the daily

activities of healthy subjects outside the laboratory [29].

Owing to their effectiveness in learning intricate and nonlinear

functions, NN's computational efficiency of NN during testing

renders them suitable for real-time clinical applications. However,

their susceptibility to overfitting is a drawback. The illustration of

CNN as another type of NN is shown in Fig. 4.

In Fig. 4, the convolutional layers serve as the primary

components typically employed to execute convolutional

operations between one or multiple convolutional filters (or

kernels) learned during the training phase and the layer input. This

convolution operation is conducted by sliding the convolution

kernels over the input data. In [18], raw sensor data is presented

as 3D input (S × T × 1) to the CNN model for processing.

Following a sequence of convolutional and pooling layers, the

output of the final convolutional layer is typically transformed into

a smoothed 1D vector and then directed into the softmax layer.

The Rectified Linear Unit (ReLU) stands as the most frequently

used activation function for convolutional layers. Additionally, it's

common to incorporate multiple dense layers of a multilayer

perceptron into the CNN architecture to address classification

problems. In such scenarios, a softmax activation function is

generally employed to connect the last dense layer to the output

layer.

2.4. DEEP LEARNING

Deep Learning is a branch of ML that uses multi-layered neural

networks to analyze and generate predictions or decisions based

on a variety of inputs. Its effectiveness is particularly evident

when handling high-dimensional data, making it suitable for the

analysis of wearable sensor data [30]. Deep learning is used in

healthcare applications to analyze the large and complex datasets

generated by devices. For instance, deep learning systems can

examine data from accelerometers, heart rate monitors, and other

Fig. 3. Visualization of RF and DT reprinted with permission from

Ref. [6]. Copyright (2021) Elsevier Inc.

Fig. 4. Illustration of a Convolutional Neural Network (CNN) model

with convolutional layers, pooling layers, h dense layers, and

c output classes represented by a softmax layer. Input data are

processed by convolutional layers and pooling layers and are

passed to dense layers after extraction of profound features

reprinted with permission from Ref. [18]. Copyright (2022)

MDPI.
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sensors to identify patterns that may indicate illnesses or other

health problems [6]. An example is the analysis of time series data

from wearable sensors using CNN. CNN, which are categorized

as deep learning models, excel at analyzing spatial data, making

them suitable for tasks such as recognizing activities based on

accelerometer data [30].

Wearable sensor data processing is further aided by another

class of deep learning models called Recurrent Neural Networks

(RNN). RNN is optimized for sequential data and are therefore

well-suited for tasks such as assessing an accelerometer reading or

a sequence of heart rate measurements [6].

Although deep learning can yield insightful information from

wearable sensor data, it has certain drawbacks. Wearables with

limited processing power and battery life may find it difficult to

train deep-learning models because they can be computationally

demanding and require large amounts of data [27].

3. WEARABLE SENSOR DATA ANALYSIS 

USING MACHINE LEARNING

The analysis of the wearable sensor data followed a structured

six-step pipeline. Initially, data are gathered from wearable

sensors, with the specific type contingent on the sensor and

observed health condition. For example, a motion sensor records

movement data, whereas a heart rate monitor records heart rate

data. Subsequently, the collected data were preprocessed to

eliminate errors or inconsistencies, normalize the values, and

transform them into formats compatible with ML algorithms. The

third step involved segmenting the data into time-specific

windows, each containing a set of data points. Following

segmentation, features are extracted from each data segment to

represent measurable characteristics that distinguish various health

conditions or states. Once the features are known, a suitable

algorithm is selected and trained on the retrieved data to create a

machine learning model. The goal of the model was to use

attributes to learn, predict, or classify health problems. The

pipeline ends with an assessment of the performance of the ML

model using a different test set to measure the recall, accuracy,

precision, and F1 score, which are determined by the following

formulas [6]:

(1)

(2)

, (3)

where  denotes the true positive,  denotes the false positive, and

 denotes the false negative for all entries. True positive ( ) refers

to the accurate identification of abnormal samples, whereas false

positive ( ) denotes instances where normal samples are

inaccurately classified as abnormal movements. False negatives

correspond to samples incorrectly identified as exhibiting normal

movement. [18]. These systematic approaches are illustrated in Fig. 5.

4. CHALLENGES AND OPPORTUNITIES

ML faces various challenges in wearable sensor devices and

F1 2
Precision Recall

Precision Recall+
--------------------------------------------=

Precision
tp

tp fp+
------------=

Recall
tp

tp fn+
------------=

tp fp

fn tp

fp

Fig. 5. Step-by-step process of wearable sensor data analysis using ML reprinted with permission from Ref. [6] Copyright (2021) Elsevier Inc.
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healthcare systems. Systems for Human Activity Recognition

(HAR) have many challenges when dealing with various input

features such as different activities and individual traits [31].

Although implementing models on wearable devices enhances

privacy, integration challenges arise from limited computing

power, storage, and battery life [32]. Sensor data noise increases

the complexity, necessitating a careful balance between retaining

predictive power and avoiding measurement noise [33]. If the first

training fails to capture a wide range of situations, then

lightweight algorithms that depend on aligned training data exhibit

reduced accuracy [34].

The rapid increase in popularity and theoretical gaps in deep

learning have attracted criticism despite its success, further

complicating the field of ML applications [31]. Data security and

privacy in healthcare have been severely challenged by the focus

on on-device data. On-device processing limitations are addressed

by methods such as model compression; however, putting them

into practice without compromising accuracy is a difficult task.

The need for efficient implementation impedes the promise of

transfer learning, which uses pretrained models for one task and

retrains specific layers for another. This demonstrates how

complex the problems ML applications in wearable sensors and

healthcare face are [32].

Amidst these challenges, summarizing the previous sections,

ML applications in wearable sensor devices and healthcare

present several opportunities for advancement.

1) Advanced tools for predictive outcomes: ML algorithms

have developed into advanced tools that provide system

intelligence for learning, development, and outcome prediction

without requiring human intervention. They are widely used in

most industries, including cyber security, smart city planning, and

financial markets [1].

2) Real-time data analysis: Wearable sensor data can be

processed and analyzed by ML models in real time, allowing for

assessments and predictions of reserve or decompensation status,

as well as activity and context. The user can then receive the

summarized data [14].

3) Exer-gaming and physical activity: Children can be

encouraged to engage in physical activity using ML in

exergaming. A game may become more engaging, motivating,

and enhance motor abilities if ML-based feedback is incorporated

[16].

4) Identification of symptoms: ML can help recognize the

signs of neurological illnesses or movement problems, which can

help with diagnosis or symptom treatment [16].

5) Improved healthcare services: ML is essential for the

operation of healthcare technologies. Allotting time, completing

healthcare requirements, and automating hospital logistics can

increase productivity. Algorithms that match the accessibility of

medical professionals with appropriate clinical skillsets in the

surrounding area can be developed using ML [20].

6) Diagnosis and treatment planning: High-risk patient case

detection, prevention, diagnosis, and treatment planning can be

aided by ML. By offering an intelligent model that will help

physicians and clinicians arrive at the most accurate diagnosis, the

diagnostic process [20].

7) Human activity monitoring: ML techniques have been

extensively and effectively applied to elderly healthcare systems

and the monitoring of human activity. Instead of using manually

created feature extraction processes, they automatically extracted

features from raw data [31].

5. CONCLUSION AND FUTURE DIRECTION

Transformative breakthroughs in healthcare and wearable

sensor technologies can be achieved by incorporating ML

technology. Despite the existing obstacles, including diverse input

characteristics and privacy issues, ML presents unprecedented

possibilities for precise illness identification, real-time monitoring,

and personalized treatment strategies. The proposed applications,

ranging from human activity monitoring to advanced prediction

algorithms, highlight the potential for transforming healthcare

procedures and enhancing patient outcomes. Collaborative,

multidisciplinary research is essential as we negotiate these

obstacles and ensure that upcoming advancements in ML lead to

a more efficient, patient-centered healthcare environment.

Improvements in ML for wearable medical devices can

improve the well-being of patients. Future research should focus

on developing user-friendly HAR systems that can be seamlessly

incorporated into daily life, handle various input sources, and

encourage long-term adherence. The practicality of continuous

monitoring can be improved by workable solutions that optimize

ML on wearables while considering battery life and processing

power. Innovations should focus on real-time applications such as

user-friendly interfaces that provide easily understandable

information. ML in remote rehabilitation systems for various

situations should be a subject of future research. Bridging

theoretical advancements with practical applications is crucial for

maximizing ML's potential in personalized and accessible patient

care.
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