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          The use of various adulterants and harmful chemicals is rapidly increasing in various sectors such as agriculture, food, and pharmaceuticals, and they are also present in our surroundings in the form of pollutants. The regular and repeated intake of harmful chemicals often adversely affects human health. The prolonged exposure of living beings to such adverse components can lead to severe health complications. To avoid the unlimited utilization of these chemical components, a sensing technology that is sensitive and reliable for low-concentration detection is beneficial. Surface-enhanced Raman spectroscopy (SERS) is a powerful method for identifying low-range concentrations of analytes, leading to great applications in molecular identification, including various diagnostic biomarkers. SERS in chemical, gas, and biological sensors can be an excellent approach in the sensing world to achieve rapid and multiple-analyte detection, leading to a new and efficient approach in healthcare monitoring.
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      1. INTRODUCTION
      In today's fast-paced world, technological and lifestyle	developments are observed and experienced daily. Undoubtedly,	modern inventions have made life comfortable. However, a	significant portion of this progress has resulted in the use of	various gases and chemicals that cause numerous health-related	complications [1]. Various chemical pesticides [2,3], insecticides	[4,5], preservatives [6,7], and dyes [8,9] are widely used to keep	eatables fresh, appealing, and for pest attack prevention. Long-term consumption of these products can lead to various health	complications, some of which can be severe [10-12]. Besides the	food-related overuse of chemicals, other factors also affect human	health, such as gases released from landfills and sewage, often	referred to as volatile organic compounds (VOCs) [13] and greenhouse gases [14].

      Considering the health risks related to the consumption and	exposure to these injurious elements, it is necessary to determine	whether they are used unnecessarily or over the prescribed limit.	The major requirements of the sensing mechanism are proper,	hustle free and sensitive molecular identification of various	chemicals and gas molecules. SERS is an emerging analytical	technique that proves useful for trace-level molecular detection	and identification [15]. Raman spectroscopy provides label-free	characterization of molecules or analytes, where each molecule	exhibits a specific Raman band position and intensity, which are	called the fingerprints of the molecule [16]. Therefore, it is	possible to identify more than one analyte in a mixture of samples	using Raman spectroscopy. However, the Raman scattering	spectral intensities are very low, limiting their application to pure	or concentrated samples [17]. To overcome this drawback, SERS	is a compelling method for enhancing the signal intensity of	normal Raman spectra. This is due to the occurrence of surface	plasmon resonance, which causes an oscillating electric field of	incident light on the metal nanostructures or nanoparticles (NPs)	used [18]. The hotspots in the assembly of nanomaterials play an	important role in signal amplification [19-21]. Apart from	chemical sensing, SERS can also be utilized for biomedical	sensing, where identification is possible by analyzing various	disease-related biomarkers and their increased production in the	body. Disease biomarkers include ions, toxins, microbes, and living cells [22,23].

      In this review, we highlight the various potential applications of	SERS substrates in terms of chemical sensing of food items used	in our day-to-day life, gas sensing, and biomolecular detection of	various diseases, which can be very advantageous in the medical	field for easy and early identification. The aim was to emphasize	the possibility of using SERS and SERS sensing abilities as	convenient, reliable, and sensitive technologies to improve human	health and well-being.

    

    

  
    
      2. SERS SENSING APPLICATIONS
      
        2.1 Chemical Sensing
        Food additives and pesticides are widely used in the agricultural	sector and are packed or ready-to-serve food items. The primary	purposes of such adulterants are protection, preservation, texture	improvement, and enhancing appearance. However, this often	results in the excessive use of these chemical components, leading	to various adverse effects on human health with prolonged	consumption.

        Therefore, it is essential to measure the contents of these	materials, and SERS can be employed for this purpose. In	particular, packaged and edible drinks are often laced with such	products to increase their shelf life. Numerous studies have been	conducted to simulate real samples by adding contaminants to	food products and using SERS substrates for analysis.	Thiabendazole (TBZ) food preservatives are frequently used in	juices and drinks, and high doses or prolonged consumption can	lead to thyroid hormone imbalances and liver damage. Xuan et al.	[24] showed that the metal-organic frameworks (MOF) composed	of terephthalic acid (PTA) and Fe3+ with gold and silver on the	surface of MOF can be used to identify thiabendazole	concentrations as low as 50 ppb in juice. Where the experimental	procedure of this work showcased SERS spectra results indicating	TBZ identification in the juice sample containing the TBZ	contamination. The silver (Ag) NPs and MOF of Material of	Institute Lavoisier 101 with Iron (MIL-101(Fe)) can be used for	determining sodium thiocyanate (NaSCN) preservative in water	and milk as low as 18.5 μg/L and 96.3 μg/L respectively. NaSCN	long term intake could be resulting in low absorption of iodine in	human body, and abnormal thyroid hormone disorder as suggested	by Wang et al. [25]. 

        Several other MOFs containing silver (Ag) and gold (Au) NPs	have been utilized for pesticide detection. Among the common pesticides and insecticides are parathion-methyl (PTM) and	methenamine. Research conducted on the MOF of Au/Cys-Fe3O4/MIL-101 by Zhu et al. [26] successfully detected PTM at 5 ppb	in juice, and that on the MOF of Au@MIL-101(Fe) by Cai et al.	[27] effectively determined 1.0 x 10−9 M methenamine in	vermicelli. New Coccine (NC) and Orange II (OII) in	contaminated soft drinks and paprika were studied and identified	with a low limit of detection (LOD) of 0.4015 mg/L for NC and	0.0546 mg/L for OII. The MOF used here was UiO-66(NH2)@Au	as reported by Wu et al. [28]. 

        Besides MOF, SERS substrates containing AgNPs were also	employed by Mandrekar et al. for thiram pesticide analysis on the	fruit's surface, detecting concentrations as low as 1 µM [29], from	the apple surface contaminated from concentration ranging 1 µM	of lowest up to 1 mM of thiram. as illustrated in Fig. 1. This study	involved fabricating a flexible tattoo-paper-based AgNPs substrate	capable of identifying pesticides on curved surfaces of fruits and	vegetables. Fig. 1(a) displays a photograph of the fabricated	tattoo-paper-based SERS substrate with AgNPs, along with	scanning electron microscopy (SEM) images. Fig. 1(b) showcases	a sample collected from the fruit's surface using the tattoo-paper	SERS substrate. Raman spectra of various concentrations of	thiram solution on the fruit specimen's surface are presented in Fig. 1(c). Similar chemical measurement of explosive molecules	of trinitrotoluene (TNT) down to 10-10 M was carried out by Kong	et al. [30]. The preparation of the AgNPs SERS substrates was	carried out by in-situ growth method from electroless deposited	seeds within the photonic nano porous diatom for the 3-dimentional (3-D) hybrid plasmonic–photonic were fabricated on	crystal biosilica. Such SERS substrates showing impressive	chemical identification qualities are very useful in terms of future	applications for sensors based on chemical molecules.

        
          
          

          Fig. 1. 
				
          

          
            (a)(i) Image of the flexible tattoo-paper SERS substrate with	printed AgNPs, (a)(ii,iii,iv) SEM images of the silver AgNPs;	(b) Sample collection on the apple surface contaminated with	thiram; (c) SERS intensity spectra of the apple specimens	showing peak intensities at 560 cm−1, 933 cm−1, 1144 cm−1	and 1382 cm−1 for the different concentration of ranging from	1 μM to 1 mM of thiram solutions. Reprinted with permission	from Ref. [29]. Copyright (2023) MDPI.
          
          

          

        

      

      
        2.2 Gas Sensing
        The emissions of harmful and toxic gases into the atmosphere	have increased in recent years. The major reasons for this could	be increasing industrialization and vehicle transportation. Toxic	gas emissions from such sources and occupational exposure can	lead to poor health quality [31]. Hence, sensitive sensing	techniques are of great importance to prevent and detect	accidental leakage of such gases. SERS, with its excellent	molecular identification qualities, can be utilized for such	purposes. Ethanol and acetone vapors, classified as VOCs, are	extensively used in industries and household applications, and	they can be found in the air, posing harm to human health	through long-term inhalation. Exposure to these VOCs can	cause several health concerns, including headaches, drowsiness,	eye irritation, and breathing difficulties [32,33]. Additionally,	VOCs like acetone can serve as essential biomarkers for diabetes	when detected in a patient's exhaled breath [34]. Multiplex	SERS-based detection of VOCs, including acetone and ethanol	vapors, has been achieved using SERS substrates of silicon	nanopillars coated with Au carried out by Wong et al. [35]. The	work exhibited detection of mixture of acetone and ethanol	vapors with a low detection range of concentrations of 0.0017 ng	and 0.0037 ng respectively. The results also proved to be great	example to show the use of SERS sensing technique for multiple	molecular analyses simultaneously.

        There are various possibilities for the generation of other	explosive and flammable gases and vapors in the air due to	different reasons. SERS allows for the sensitive detection of such	gaseous components. Among the numerous studies, one involved	the detection of the explosive molecule 4-aminothiophenol (4-ATP) down to 10−8 M, utilizing gold nanowires (AuNWs) on two-dimensional graphitic carbon nitride nanosheets (g-C3N4/AuNWs)	with reusability up to six cycles by Xu et al. [36]. Warfare agents,	known for their explosive and destructive nature, can be highly	dangerous. Study carried out by Lafuente et al. [37] identified dimethyl methyl phosphonate (DMMP) with a detection limit as	low as 130 ppb in the gas phase using citrate-capped AuNP	monolayers. Additionally, 2,4-dinitrotoluene (DNT) vapor was	deposited on a polyethylene terephthalate (PET) sheet using a	flexible AgNP ink SERS substrate and analyzed by Emamian et al. [38] successfully using Raman spectroscopy.

        SERS substrates also have advantages in gas sensing for the	food sector, where identifying spoiled eatables is crucial to ensure	food safety. Spoiled food often releases specific odors and gases	[39]. Chen et al. [40] suggested gold nano-bipyramids (Au NBPs)	encapsulated by zeolitic imidazolate framework-8 (ZIF-8) (Au	NBPs@ZIF-8) were successful in identifying 0.2 nM to 20 mM	hydrogen sulfide (H2S) gas released from spoiled fish meat.	Sample collection and analysis process was carried out by storage	of different fish samples of C. saira, H. olidus, and L. polyactis at	different storage time durations of 0 h, 12 h, 24 h and 48 h such	that the fish samples spoiled and the released H2S gas which was	then measured using handheld Raman spectrometer. The	fabricated SERS had detection range of 0.2 nM to 20 mM with a	LOD of 0.17 nM.

        Work involving another zeolite framework, Au@ zeolite	imidazolate-8 (ZIF-8) SERS, was able to recognize important	volatile indicators for evaluating food spoilage, namely putrescine	and cadaverine, with the lowest concentrations of 79.99 ppb and	115.88 ppb, respectively, in spoiled salmon, chicken, beef, and	pork samples by Kim et al. [41]. The work done by Chen et al.	[42] employed poly acrylic acid (PAA), poly methyl methacrylate	(PMMA) and polydimethylsiloxane (PDMS) multiple SERS gas	sensor matrix fabrication along with AgNP. Three target gases	involved were phenethyl alcohol, acetophenone and anethole. Fig.	2(a) highlights the gas detection process in schematical form. Fig.	2(b)(i,ii,iii) are the resultant Raman spectra of phenethyl alcohol,	acetophenone and anethole gases respectively. These studies shed	light on the capabilities of SERS technology in gas sensing,	demanding highly sensitive sensors with low-concentration range	applications, making SERS a preferable option in gas-sensing	applications.

        
          
          

          Fig. 2. 
				
          

          
            (a) Schematic representation of gas generation and detection process; (b) Raman spectra of (i) phenethyl alcohol gas, (ii) acetophenone	gas, (iii) anethole gas. Reprinted with permission from Ref. [42]. Copyright (2021) MDPI.
          
          

          

        

      

      
        2.3 Biomolecular Sensing
        The human body tends to produce various abnormal	biomolecular signals, which can be advantageous for identifying	the early stages of various diseases or other health abnormalities	in an individual [43-45]. These biomolecules can serve as key	identification markers in SERS technology, and liquid biopsy,	which involves analyzing biological liquid samples, can aid in biomarker recognition. Cao et al. [46] suggested that SERS	substrate of zinc oxide (ZnO) tips decorated with AuNP can be	advantageous for trace identification of nicotine in human saliva as low as 1 × 10−10 mol/L. The visual schematic representation of	hydrothermal synthesis of the substrate is shown in Fig. 3(a).	Raman spectra of various concentrations of nicotine in saliva	samples is exhibited in Fig. 3(b). Peak at 1589 cm−1 was chosen	for the nicotine detection due to easy observation without any	spectral interference.

        
          
          

          Fig. 3. 
				
          

          
            (a) Schematic representation of hydrothermal fabrication of	SERS substrates containing ZnO tips decorated with AuNP;	(b) Raman spectra of different concentrations of nicotine in	saliva. Reprinted with permission from Ref. [46]. Copyright	(2021) MDPI.
          
          

          

        

        A peroxidase-mimicking nanozyme was developed by	decorating magnetic ring-like iron oxide (Fe3O4) with AuNPs (R–Fe3O4/Au) by Huang et al. [47] for colorimetric and SERS dual-mode detection of biomolecules in human serum. This nanozyme	facilitates detecting spiked biomolecules such as glutathione	(GSH) and cholesterol in human blood serum. The substrate	allows for the lowest sensing of glutathione (GSH) up to 0.10 μM	and cholesterol up to a concentration of 0.08 μM, with substrate	stability and reusability of up to 5 times.

        Regarding the forensic use of SERS substrates, the work done	by Atta et al. [48] using synthesized bimetallic gold nanostars	covered with AgNPs (BGNS-Ag) SERS platforms provided	excellent sensing capacity of cocaine and heroin in spiked water	and human urine samples having the detection LOD as low as 10	pg/mL for cocaine and 100 pg/mL for heroin.

        The SERS technique with an annealed AgNP/porous silicon	Bragg mirror composite substrate was used for biomolecular	analysis of breast cancer patient serum and comparison with healthy human serum samples as reported by Cheng et al. [49].	These results revealed that valine and collagen could be used	as diagnostic biomarkers. Additionally, differences in the peak	intensities of proteins, bases, carotenoids, and lipids are useful	for comparison between normal and cancerous serum samples.	The enhancement of such molecular intensities in cancerous	samples compared to normal samples can be an indicator,	considering the abnormal secretion in contrast to healthy	individuals' samples.

        Apart from liquid biopsy, SERS can be used for molecular	reporter identification in cancer detection in cancerous and tumor	tissues. Several studies have been conducted to detect breast	cancer tissues and their biomarkers. Choi et al. [50] highlighted	from his work of study use of polyethylene glycol (PEGylated)	Ag-Au hollow nanospheres functional SERS tags in breast cancer	cells Sk-Br3 and MDA-MB-231. The cell lines were analyzed for	three cancer biomarkers: anti-epithelial cell adhesion molecule	(EpCAM), anti-erythroblastic oncogene B2 (ErbB2), and anticluster of differentiation (CD44), involving Raman reporters for	each biomarker, namely malachite green (MGITC), rhodamine B	isothiocyanate (RBITC), and 3,3'-diethyithiatri carbocyanine	iodide (DTDC), respectively. This study involved Raman	mapping identification of cell lines. Also, Qiu et al. [51] carried	out study involving Au@Ag core–shell nanoparticles, decorated	with a double layer of Raman reporter on the surface of the Au	core and Ag shell, functionalized with polyethylene glycol (HS-PEG-NHS), were fabricated for mapping tumor cell markers,	specifically epidermal growth factor receptors (EGFR and	ErbB2), and insulin-like growth factor 1 (IGF1). The Raman	reporters used were similar to those reported in a previous study.	Malachite green isothiocyanate (MGITC) for EGFR, rhodamine B	5-isothiocyanate (RBITC) for ErbB2, and 3,3′-diethyithiatri	carbocyanine iodide (DTDC) for IGF1. Human normal mammary	epithelial cell line (MCF-10A) and human breast cancer cell lines	(KPL-4, SK-BR-3, and MDA-MB-468) were used for work.	Therapeutic efficacy after chemotherapy and surgical treatment	was also evaluated through SERS imaging in live mouse	specimens where different organs of the mice were studied using	Raman mapping for evaluating the effect of antitumor drug	therapy and surgery treatment. Similarly, the breast cancer cell	lines MDA-MB-231 and MCF-7 were subjected to SERS sensing	of urokinase plasminogen activation receptor (uPAR) and EGFR	as target peptides using GNS with Raman-active molecules 4-nitrothiophenol (NTP) and Diamino-1,3,5-triazine-2-thiol (DATT)	by Li et al. [52].

      

    

    

  
    
      3. CONCLUSION
      This review focuses on the recent advances made in SERS	technology, especially in terms of its sensing applications. The	identification of numerous gaseous and chemical molecules is	crucial for ensuring the health and safety of living organisms.	SERS is a vibrational spectroscopy technique that is beneficial for	highly sensitive structural detection of low concentration analytes	and signal amplification due localized surface plasmons plays an	important role in in the identification of the of minute	concentrations. Although the experimental work and setups	requires careful handling of sample and optical setup to ensure	maximum signal generation and enhancement, it is a non-destructive technique for determining chemical identity and	structural information from small numbers of molecules. SERS	nanomaterial-infused substrates can serve as highly beneficial	sensing devices, utilizing label-free Raman spectroscopy. The low-concentration sensitivity and possession of unique fingerprint	spectra for each individual molecule make SERS a valuable tool	for simultaneous identification of multiple analytes. It enables easy	detection and identification of chemicals, gases, and biomolecules.	Moreover, SERS can identify minute concentrations of target	elements. Considering all the advantages and related study	outcomes, it is safe to say that SERS can find wide-ranging	applications in various fields for the future applications such as	sensing and identifying the injurious adulterant may it be in	consumable products, cosmetics, or drinks, as well as for the	identification of various drugs and chemicals which are important	in terms of regular safety checks and measures. Also, the	employment of the SERS based sensors for harmful gases and	vapors detection in the industrial facilities where the chances of gas	leakage are likely to be happening or in the household facilities can	be a great application in the future. In terms of future medical	application of the SERS, it can be used in flexible skin attachment	devices for the recognition of various biomarkers which can be	helpful for the early disease identification. 
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