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Abstract

Effective fire sensing is important to protect lives and property from the disaster. In this paper, we present an intelligent visual sensing

method for detecting fires based on machine learning techniques. The proposed method involves a two-step process. In the first step,

fire and non-fire images are used to train a convolutional neural network (CNN), and in the next step, feature vectors consisting of 256

values obtained from the CNN are used for the learning of a support vector machine (SVM). Linear and nonlinear SVMs with different

parameters are intensively tested. We found that the proposed hybrid method using an SVM with a linear kernel effectively increased

the recall rate of fire image detection without compromising detection accuracy when an imbalanced dataset was used for learning. This

is a major contribution of this study because recall is important, particularly in the sensing of disaster situations such as fires. In our

experiments, the proposed system exhibited an accuracy of 96.9% and a recall rate of 92.9% for test image data. 

Keywords: Vision sensing, Fire detection, Machine learning, Convolutional neural network (CNN), Support vector machine

(SVM), Recall rate

1. INTRODUCTION 

Fire is one of the most common disasters that causes enormous

losses of life and property. For example, in 2022, more than

40,000 fires occurred in the Republic of Korea, resulting in the

deaths of 341 people [1]. To mitigate such incidents, sensing fires

swiftly and accurately in their early states is of utmost importance.

Commercial fire sensors sold on the market include heat,

smoke, and carbon monoxide (CO) detectors. These point

detectors have several advantages, including low cost, simple

technology, small size, and ease of installation. However, they are

effective only for short indoor sensing distances. Moreover, the

system manager must visit the fire alarm site in person to ascertain

whether the alarm has been triggered by an actual fire or simply

because of the malfunction of the sensor.

Vision is the most powerful sensory function in humans. As

humans recognize the occurrence of fire using eyes, research and

development have been undertaken to automatically detect fire

occurrences using machine vision. If a vision system is used, the

system manager can promptly assess the size and progress of a

fire using real-time camera images when the fire breaks out. In

addition, a practical advantage arises from the feasibility of

installing and operating only fire-detection software on existing

camera systems, obviating the need for additional sensing device

installations.

With recent advances in machine vision technology, various

attempts have been made to automatically detect fires using image

processing [2,3]. Traditional vision-sensing and pattern-

recognition technologies utilize the spatiotemporal characteristics

of smoke or flames for detection. Pixel color is often used as an

important fire detection cue. Recently, machine learning (ML),

which utilizes deep neural networks (DNNs), has become one of

the main approaches to automatic image classification. The

widespread adoption of DNN-based ML is backed by high

computing power using graphics processing units (GPUs) and

large numbers of training images that are readily accessible

through internet sources or datasets. Furthermore, many efficient

ML methods and software tools have been competitively released

during the ongoing surge in global AI research and development. 

Among the various types of DNNs, the convolutional neural

network (CNN) is widely used for image learning. A practical

advantage of CNNs is their ability to automatically learn target

features without requiring manual specifications. CNNs have

demonstrated exceptional accuracy in diverse applications
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including fire sensing. For instance, Hao et al. [4] achieved a

flame detection accuracy of 92.5% utilizing a CNN on the region

of interest (ROI) extracted based on spatiotemporal image

attributes. Zhong et al. [5] achieved an accuracy of 97.6% by

training a CNN on ROIs derived using an RGB color model

applied to video images. However, this approach has two

limitations. First, the ROI selection may occasionally be incorrect.

For instance, if a fire flame does not match a preselected color

model, it remains undetected and is not processed by the CNN.

Second, although numerous images can be acquired from several

video clips of fires, the diversity of these images is often low.

Therefore, there are doubts about whether a CNN trained with

images from several video clips can work well in various real-

world situations. 

In this study, we use a CNN and support vector machine (SVM)

that operate collaboratively for fire image detection. For the task

of fire detection, we emphasize the importance of the recall rate,

although many existing ML-based pattern-classification methods

use accuracy as a major performance measure. In disaster

situations, including fires, the detection of all target images is of

great importance, and the recall rate represents this performance.

The number of fire images used for learning can be significantly

lower than the number of non-fire images, and this dataset

imbalance results in a low recall of fire images when a CNN is

used. We tackle this practical problem by employing an SVM, as

the classification decision boundary of an SVM is determined not

by the entire data but only by support vectors, the data that lie on

the maximum margin hyperplanes in the feature space. In this

case, the output of a CNN based on imbalanced data can be

appropriately modified using an SVM. Linear and nonlinear

SVMs with various parameters were tested and analyzed.

2. INTEGRATION OF CNN AND SVM FOR 

FIRE IMAGE DETECTION

An SVM classifier was employed to identify fire images based

on feature vectors obtained by a CNN. SVMs have been used

successfully in various fields. However, as reported in previous

studies [6,7], the performance of an SVM generally does not reach

that of a CNN. One reason for this is that it is difficult to

appropriately select the image features required for training an

SVM. Thus, we constructed a linked learning system that

automatically extracts a large feature vector from an input image

using a CNN and then classifies the image using an SVM based

on the feature values. 

The structure of the proposed fire-image detection system is

illustrated in Fig. 1. The learning operation of the system

consisted of two steps. In the first step, a dataset of fire and non-

fire images was used to train a CNN. In a CNN, the feature vector

of the input image is obtained by performing a series of

convolution and pooling operations. In the second step, an SVM

was trained to classify the input images into fire or non-fire

classes based on the feature values provided by the CNN. After

the learning steps, a feature vector was obtained using the CNN

for a given input image, and the SVM predicted the class of the

input based on the features.

2.1 Image Feature Extraction using a CNN 

A CNN is a deep neural network that is primarily used for

image classification. The input of a CNN is a tensor consisting of

the numbers, height, width, and channels of the image data. The

convolutional operation between the input image and kernels is

performed in the convolutional layer of the CNN, and then the

output is computed using an activation function. The size of the

output data can be reduced by using the maximum or average

value of a window in the pooling layer to prevent overfitting.

After extracting the features of an image through a series of

convolutional and pooling layer operations, the feature values are

flattened into a vector. The feature vector is then propagated

through multiple fully connected layers, and the result is obtained

using the softmax operation. Finally, one-hot encoding is

performed. If the output of such a feedforward operation differs

from the actual label of the image, the supervised learning process

for modifying the parameters of the neural network through

backpropagation is repeated until the desired output is obtained.

In this study, the input of the CNN was RGB color images,

which were 224 × 224 pixels in size. After repeating the

convolution and max-pooling operations four times with 3 × 3

kernels and a 2 × 2 pooling window, a feature vector with 4,608

Fig. 1. The proposed system structure.
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elements was generated. In the fully connected network, the size

of the feature vector was reduced to 256, and the vectors were

connected to the output nodes. The activation function used in

each layer was ReLU. 

2.2 Classification by an SVM 

An SVM is a supervised machine learning model that is useful

for data classification. A two-class data classification problem

using an SVM is described in Eq. (1) [8,9].

(1)

where x is the N-dimensional training data,  is a feature-

space transformation, and b is a bias term. When the target output

for a given input is , , w and b are

determined such that the output becomes  for 

and conversely  for . An SVM selects the

decision boundary to maximize the margin between two classes.

This decision boundary in the feature space is determined not by

all the training data, but only by the support vectors. 

 (2)

such that for all i, (3)

The aforementioned SVM model is suitable for datasets that can

be completely separated. However, in practice, data often have a

complex distribution, and it is difficult to separate them perfectly

using a straight line in the feature space. Therefore, by

acknowledging the existence of data misclassified by a decision

boundary, a slack variable  is introduced to

impose a penalty on misclassified data. The target function to be

minimized is set as follows: 

(4)

where C>0 is a parameter that controls the tradeoff between the

slack variable penalty and the decision margin. Fig. 2 shows the

SVM classifier and the slack variable. 

If a given classification problem is nonlinear, as shown in Fig.

3, an SVM model using a linear kernel does not perform well. In

this situation, it can be effective to use a radial basis function

(RBF) presented in Eq. (5) as the kernel for nonlinear learning.

(5)

where  is the kernel parameter. Setting a small value of  reduces

the curvature of the decision boundary, thereby preventing

overfitting. In a complex nonlinear data distribution, on the other

hand,  must be increased. When using an SVM with a linear

kernel, the best result is found by varying parameter C n times. In

comparison, when using an SVM with an RBF kernel, for finding

the best , search must be conducted an extra m times, i.e., n×m

grid search is needed.

2.3 Dataset Imbalance and Performance Measure

The ML performance depends heavily on the quality of the

dataset used. Erroneous, irrelevant, or insufficient data affect the

accuracy of learning, and there is a high possibility of incorrect

predictions in utilization after learning. However, it is difficult to

construct a suitable dataset for many real-life situations. A

practical problem is that the amount of data for a particular class

is often significantly smaller than that for another class. This is

known as the data imbalance problem [10]. 

In the case of ML for vision-based fire sensing, acquiring

images of various fire states under all possible conditions is

virtually impossible. The background scene varies from place to

place, and fire images may vary even in the same place depending

on the season, weather, time, and cause of the fire. Even if all
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Fig. 2. SVM as a maximum margin classifier and slack variable ξ. 

Fig. 3. Nonlinear SVM with an RBF kernel.
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these conditions are assumed to be fixed, the image varies rapidly

depending on the progress of the fire. In contrast, non-fire images

can be easily collected as required. When the number of non-fire

images is much larger than the number of fire images in a training

dataset, the ML system learns more from the non-fire images than

from the fire images.

In ML-based classification, the accuracy defined in Eq. (6), is

typically used as the learning performance indicator.

(6)

where TP means true positive, TN means true negative, FP means

false positive, FN means false negative, and symbol # means

“number of.” Although accuracy is important in ML, measuring

the performance of a model using accuracy is problematic in some

cases. For example, it was pointed out that accuracy-based

machine learning can lead to practical problems in fire detection

because the reliability of the automated fire alarm system will be

lowered if the false alarm rate is high [11]. 

We believe that, in the case of disaster sensing, including fires,

the ability of a model to detect a target without failure is of great

importance. This ability can be measured using the recall rate,

defined in Eq. (7). The recall of a system should be checked,

particularly if there is an imbalance in the dataset. As a simple

example, for an imbalanced training dataset consisting of 100 fire

images and 900 non-fire images, if the detection system simply

determines that all images belong to the majority (non-fire), the

accuracy of the system is 900/1000 = 0.9. However, the recall of

fire image detection is 0/100 = 0. 

 

(7)

3. RESULTS OF THE PROPOSED HYBRID 

METHOD USING CNN AND SVM

3.1 Image Dataset and Classification Results of CNN

A CNN was constructed as described in Section 2.1. To train

the CNN, we used an image dataset from Kaggle [12] that

contained 756 fire images and 243 non-fire images. However, the

actual number of fire images used in our experiments was 751,

after excluding five large watermarked or significantly edited

images. To diversify and enrich the non-fire image data, natural

and artificial landscape images from MIT CSAIL [13] were

added. The MIT CSAIL dataset consists of images from eight

categories: tall buildings, inside cities, streets, highways, coasts,

open countries, mountains, and forests. The total number of non-

fire images we used in our experiment was 2,931. 

The dataset images in the RGB color format were used as

inputs to the CNN after converting them into 224×224-pixel

images. The image dataset was divided in the ratio of

60%:20%:20% for training, validation, and testing. The

experiment was repeated five times using randomly shuffled data.

The adaptive moment estimation (ADAM) method was used for

optimization. The batch size was set to 32, and learning was

stopped when the loss for the validation data increased. Fig. 4

shows an example of the training of the CNN, where the

minimum loss occurs at the 8th epoch; thus, the model parameters

at this time are saved and used in the test.

The CNN constructed in this study exhibited a fairly high

classification accuracy of 96.0[%] on average for the test images,

as shown in Table 1. However, if the individual recall rates for fire

and non-fire images are compared, the recall for fire images is

only 88.8% on average, which is much lower than the 97.8%

recall for non-fire images. This indicates that the training of the

CNN occurred mostly on non-fire images because of the

imbalance in the dataset. In particular, in the experiment with Data

Combination 4, the recall rate for the fire images was quite low;

however, the average accuracy was still high because of the

numerous correctly classified non-fire images. This is not the

objective of fire detection. If we consider only the learning

accuracy as a performance index, as in many existing studies, it is

Accuracy
TP TN+

TP TN FP FN+ + +
--------------------------------------------=

 # Correctly  Classified  Images 

 # All  Images 
------------------------------------------------------------------------------------=

Recall
TP

TP FN+
-------------------=

 # Correctly  Detected  Fire  Images 

 # All  Fire  Images 
-----------------------------------------------------------------------------------------------=

Fig. 4. Validation loss during CNN training
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easy to overlook this situation, which can lead to dangerous results

in the automatic sensing of disasters, such as fires, when the

system is employed in real-life applications. 

For comparison purposes, the dataset was divided into 70%,

15%, and 15% for training, validation, and testing, respectively,

and the experimental results are listed in Table 2. These results are

similar to the results presented in Table 1. 

3.2 Results of SVM Classification

Linear and nonlinear SVMs were tested to classify the input

images based on the feature vectors extracted by the CNN. First,

an SVM with a linear kernel was considered. A total of 256

feature values were used. With the dataset used in the experiment

shown in Table 1, the SVM performance was determined for

different values of parameter C in Eq. (4). For example, with Data

Combination 1, the performance of the SVM according to the

variation of C was as shown in Table 3, where C = 1×103 yields

the best value. When the SVM was used for other data

combinations in the same manner, the results shown in Table 4

were obtained. Compared to the results of the CNN shown in

Table 1, the test accuracy increased slightly from 96.0% to 96.9%,

and the recall increased significantly from 88.8% to 92.9% on

average. This demonstrates that the proposed linked structure of

the CNN and SVM is useful for improving the recall rate for a

dataset with a relatively small number of fire images while

maintaining accuracy.

Subsequently, the performance of a nonlinear SVM using an

RBF kernel was evaluated. A grid search for optimal parameters

was performed, and the search results for Data Combination 1 are

listed in Table 5, where C = 1×103 and  = 10 are the best

parameter values. In this manner, the optimal parameter values

were determined for other data combinations, and Table 6 shows

the experimental results of using an RBF SVM. When comparing

Table 6 with Table 1, which was obtained using the CNN, the

Table 1. Performance of CNN 

(The dataset was shuffled randomly five times and divided

into 60%, 20%, and 20% for training, validation, testing)

Data

Combination

All Test Images Fire Images Non-fire Images

#(Images)=738 #(Images)=151 #(Images)=587

1 713/738=0.966 147/151=0.974 566/587=0.964

2 715/738=0.969 138/151=0.914 577/587=0.983

3 717/738=0.972 147/151=0.974 570/587=0.971

4 687/738=0.931 109/151=0.722 578/587=0.985

5 709/738=0.961 129/151=0.854 580/587=0.988

Average Accuracy=0.960 Recall=0.888 Recall=0.978

Table 2. Performance of CNN

(The dataset was shuffled randomly five times and divided

into 70%, 15%, and 15% for training, validation, testing)

Data

Combination

All Test Images Fire Images Non-fire Images

#(Images)=553 #(Images)=113 #(Images)=440

1 541/553=0.978 110/113=0.973 431/440=0.980

2 537/553=0.971 105/113=0.929 432/440=0.982

3 539/553=0.975 103/113=0.912 436/440=0.991

4 527/553=0.953 89/113=0.788 438/440=0.995

5 535/553=0.967 96/113=0.850 439/440=0.998

Average 0.969 0.890 0.989

Table 3. Performance of CNN + linear SVM for different C values

(Experiment with Data Combination 1)

C 1e1 1e2 1e3 1e4 1e5

Training Accuracy 0.979 0.991 0.996 0.999 1.000

Validation Accuracy 0.963 0.966 0.970 0.970 0.969

Test Accuracy 0.961 0.967 0.977 0.973 0.972

Test Recall 0.841 0.901 0.954 0.947 0.947

Table 4. Performance of CNN + linear SVM

Data Combination
parameter Performance

C Accuracy Recall

1 1e3 0.977 0.954

2 1e3 0.967 0.901

3 1e2 0.974 0.954

4 1e7 0.961 0.940

5 1e5 0.965 0.894

Average 0.969 0.929

Table 5. Accuracy of CNN + RBF SVM for different parameter val-

ues for the validation data of Data Combination 1

Parameters  = 1e0  = 1e1  = 1e2  = 1e3

C = 1e2 0.969 0.971 0.970 0.963

C = 1e3 0.969 0.970 0.969 0.963

C = 1e4 0.970 0.966 0.970 0.963

Table 6. Performance of the CNN + RBF SVM

Data

 Combination

Optimal

Parameters

Performance

Accuracy Recall

1 C=1e2, =1e1 0.977 0.947

2 C=1e3, =1e1 0.966 0.901

3 C=1e2, =1e0 0.974 0.954

4 C=1e7, =1e2 0.957 0.927

5 C=1e4, =1e1 0.963 0.901

Average 0.967 0.926
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combination of the RBF SVM with the CNN showed a slightly

higher accuracy and significantly improved recall. However, its

performance was similar to that of a linear SVM (Table 4),

although the training procedure for the nonlinear SVM was more

complex.

4. CONCLUSIONS 

In this paper, we present a hybrid machine-learning technique

for image-based fire sensing. The proposed approach involves a

structured process in which extensive features are extracted from

input images using a CNN, followed by SVM-based

classification. 

This study contributes to ML-based visual fire sensing in two

ways. First, the proposed method significantly enhances the recall

performance of fire-image learning. When the number of fire

images in a dataset is relatively limited, the conventional practice

of using accuracy as the primary performance metric becomes

problematic in real-world applications, particularly in the

automated detection of disasters such as fires. Through

experiments, we demonstrated the efficacy of incorporating an

SVM to address the challenge of imbalanced training data, leading

to a substantial improvement in the recall rate for fire image

detection. Notably, our proposed method holds practical

significance because it enables increased recall without

compromising accuracy. 

The second main contribution of this study is the exploration of

SVMs with both linear and nonlinear kernels. A comparative

analysis showed that the linear SVM demonstrated good

performance. In our empirical evaluations using a dataset with

3,682 images, including 751 fire images, the integration of a linear

SVM with a CNN resulted in an accuracy of 96.9% and a recall

of 92.9%, whereas the CNN alone achieved 96.0% accuracy and

88.8% recall. Similar results were obtained when an RBF-SVM

was tested. However, the process of searching for the optimal

parameter values of an RBF SVM is more complex than that of

a linear SVM. 

In conclusion, the combination of a CNN and a linear SVM is

effective for fire image detection. The proposed approach

addresses recall-related challenges associated with imbalanced

data. The empirical results underscore the practical utility of this

method in automated fire detection, where increased recall

without undermining accuracy is highly important. 
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