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1. INTRODUCTION

Hydrogen is a clean and sustainable energy source [1-9] 

capable of replacing traditional fossil fuels and is gaining a 

critical position in the global renewable energy market 

because of its potential to reduce COx and NOx emissions. 

However, hydrogen is highly explosive and flammable [10-

21] when present at concentrations between 4% and 75% in 

air; thus, safety management is essential in the areas of pro-

duction, transportation, and storage applications. For the mea-

surement of hydrogen gas concentration and leakage, the H2

gas sensor is normally employed. Therefore, the performance 

of the H2 gas sensor for the immediate and sensitive detection 

of low concentrations of hydrogen to prevent leakage from 

hydrogen infrastructure has become a critical challenge in 

real-time gas-sensing technology.

Polymer materials play a significant role in hydrogen refu-

eling stations charged with high-pressure H2 [22-43]. In par-

ticular, polymer-based materials such as O-ring seals, gaskets, 

liner materials, and nonmetallic pipelines are widely used in 

hydrogen environments. However, these polymers are sub-

jected to harsh conditions, including wide temperature and 

pressure fluctuations. These conditions can lead to seal dam-

age, insufficient contact with the groove, and gas permeation 

through the polymer seals, all of which can result in hydrogen 

leakage [44-50].

Additional hydrogen leakage is caused by the degradation 

of polymer materials [45,51,52]. Seals and gaskets made of 

polymer materials used in hydrogen refueling stations are sub-

jected to harsh conditions, including high and low tempera-

tures and repeated pressure cycles. Over time, these materials 

degrade, weakening their physical properties and increasing 

their gas permeabilities, which can lead to long-term hydro-

gen leakage. This can undermine the safety of the hydrogen 

infrastructure and requires highly reliable real-time gas detec-

tion in polymer materials.

Therefore, hydrogen gas sensors are vital for accurately mea-

suring hydrogen concentrations and leakage across applications 

where hydrogen is produced, stored, and used, such as fuel 

cells, storage facilities, and transportation systems [53,54].
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Hydrogen gas sensors rely on various sensing technologies 

that have unique advantages and limitations. Infrared (IR) 

sensing [55-63] measures hydrogen through its IR wavelength 

absorption properties, which are effective in specific environ-

ments but are often limited by their size, high cost, and power 

consumption, making them less suitable for compact and field-

based applications. Semiconductor-based sensors [64-75] 

detect hydrogen by measuring changes in the resistance or 

conductivity on the sensor surface, which is often sensitive to 

temperature and humidity variations. These sensors may also 

respond to other gases, thereby posing selectivity challenges 

and potential long-term accuracy drifts. Catalytic combustion 

sensors [76-82] detect hydrogen by measuring the heat from 

hydrogen combustion on the catalyst surface. However, these 

sensors require oxygen for operation and lose sensitivity as the 

catalyst degrades, thereby limiting their use in oxygen-free or 

long-term applications. Optical spectroscopy [83-98] offers 

high-precision hydrogen detection in controlled laboratory set-

tings. However, it is generally expensive, large, and requires 

frequent calibration, making it impractical for real-time or on-

site applications.

Electrochemical hydrogen sensors [99-115] offer high sen-

sitivity and selectivity, enabling the detection of low hydrogen 

concentrations. They are compact and energy-efficient, mak-

ing them suitable for portable applications. However, these 

sensors can be influenced by factors such as temperature, 

pressure, and humidity. Periodic calibration may be required 

to maintain accuracy. Finally, gas chromatography 

[99,101,103,106,116-127] and mass spectrometry [128-140] 

provide highly precise analyses that are commonly used in 

research and laboratory settings. Mass spectrometry identifies 

gas molecules based on their mass after ionization, whereas 

gas chromatography separates and analyzes individual com-

ponents in gas mixtures.

However, these sensing systems are expensive, require reg-

ular maintenance, and have a low processing speed. This ren-

ders them unsuitable for real-time field monitoring. In 

addition, conventional hydrogen gas-sensing technologies pro-

vide precise measurements but face challenges in terms of size, 

sensitivity, calibration, and environmental stability. These lim-

itations highlight the need for advanced hydrogen sensors that 

are compact and exhibit rapid response times, high sensitivity, 

and robust performance across various field conditions to 

ensure safety in real-time hydrogen monitoring.

Thus, we developed two types of gas sensors with good per-

formance. First, a sensor system for real-time hydrogen detec-

tion was proposed utilizing a volumetric measurement (VM) 

method based on an image-processing algorithm [5,141]. The 

system aims to provide real-time monitoring by connecting it 

to a computer via a GPIB interface and using a diffusion-per-

meation analysis program to accurately measure the H2 con-

centration/diffusion with insensitivity to temperature and 

pressure changes. 

Second, a simple H2 sensor based on a manometric mea-

surement (MM) method was developed using a portable USB-

type data logger to measure and record the pressure/tempera-

ture in a sample container and a diffusion analysis program 

[142-144]. This portable detection system can easily measure 

the gas concentration/diffusion in a polymer specimen on-site 

in real time without any chemical reactions.

The developed H2 sensor system is versatile for detecting 

and characterizing H2 gas. It effectively measures the H2

adsorption and diffusion in polymer materials in real time. The 

sensor exhibited reliable performance in terms of sensitivity, 

stability, and response time. The sensor technology presented 

in this study offers a compact, portable solution capable of 

replacing large-scale equipment with potential applications not 

only in hydrogen infrastructure safety management but also in 

the hydrogen gas industry for environmental monitoring.

The principles, procedures, results, and characteristics of 

each method were compared. Ultimately, these gas-sensing 

methods provide valuable insights into the H2 transport prop-

erties, leakage, and sealing capabilities of rubber materials and 

O-rings under high-pressure conditions, which are applicable 

in H2 fueling stations and H2 infrastructure.

2. EXPERIMENTAL

2.1. Specimen Preparation and High-Pressure H2 Gas    

Charging

The developed H2 gas sensor was used to measure the H2

gas concentration and diffusion coefficient of the polymer 

during the desorption process of the gas charged to high pres-

sure. Polymers used include low-density polyethylene 

(LDPE), high-density polyethylene (HDPE), ethylene 

propylene diene monomer (EPDM), and nitrile butadiene 

rubber (NBR). LDPE and HDPE are widely used in the man-

ufacture of containers and gas transport pipes. They exhibit 

gas-barrier properties when coated. EPDM and NBR were 

used as O-ring sealing materials in high-pressure gas tanks. 

The developed gas-detection system allowed us to investigate 

the permeation properties (solubility, diffusivity, and perme-

ability) of the polymer samples.

LDPE and HDPE were manufactured by incorporating anti-

microbial technology. The compositions and densities of the 

four polymer samples have been reported in previous studies 

[4,144]. EPDM and NBR were degassed by thermal treatment 

at 60°C for 48 h. The samples were prepared in the following 

cylindrical shapes and dimensions:
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●
 LDPE: radius (R) 9.51 mm, thickness (T) 4.89 mm

●
 HDPE: radius (R) 9.50 mm, thickness (T) 3.10 mm

●
 EPDM: radius (R) 9.51 mm, thickness (T) 2.53 mm

●
 NBR: radius (R) 9.51 mm, thickness (T) 2.18 mm

For high-pressure gas exposure, we used an SUS 316 cham-

ber at room temperature under the desired pressure conditions. 

H2 gas exposure was conducted at a pressure of 5 MPa. The 

purity of the H2 gas was 99.999%. 

The samples were charged with H2 gas at a specified pres-

sure for 24 h. A 24 h gas exposure was sufficient to reach equi-

librium for H2 sorption into the specimen. After the H2

charging, the valve was opened to release H2 gas from the 

chamber. 

2.2. Volumetric Measurements for H2 Concentration     

from Charged Polymers 

A volumetric measurement technique to assess the hydrogen 

concentration and diffusion was developed. This method 

involves measuring the concentration of hydrogen released 

from a specimen after exposure to high pressures and decom-

pression. Fig. 1 illustrates the volumetric analysis system used 

to quantify the hydrogen released at room temperature. The 

system consists of a chamber for hydrogen exposure and a 

graduated cylinder immersed in a water container.

After exposure to the high-pressure gas and decompression, 

the specimen was placed in the upper air space of the cylinder, 

as shown in Fig. 1. Hydrogen released from the specimen 

caused a gradual decrease in the water level within the cyl-

inder. Consequently, the pressure (P) and volume (V) of the 

gas inside the cylinder varied with time.

The gas within the cylinder adheres to the ideal gas law, 

expressed as PV = nRT, where R is the gas constant (8.20544 

× 10-5 m³·atm/(mol·K)), T represents the gas temperature 

inside the cylinder, and n denotes the number of moles of H2

gas released into the cylinder. The variations in pressure P(t) 

and volume V(t) of the gas in the cylinder can be described as 

[145]

  (1)

where Po represents the external pressure surrounding the cyl-

inder, g is the gravitational acceleration, and ρ signifies the 

density of distilled water. The  describes the water level 

within the graduated cylinder over time, and  is the com-

bined volume of gas and water inside the cylinder measured 

relative to the water level in the container.  indicates the 

time-dependent volume of water in the cylinder, and  rep-

resents the volume occupied by the sample.

The amount of hydrogen gas released by the polymer spec-

imen was quantified by tracking the water level position 

 over time. Consequently, the total number of moles of 

gas emitted [ ] was calculated by measuring the total gas 

volume [ ] in the cylinder, which corresponds to the 

decrease in the water level, as expressed by [145]

 (2)

where  represents the initial temperature of H2 in the cyl-

inder, and  is the pressure of H2 in the cylinder.  is the 

total volume consisting of the remaining initial air volume 

( ) and the released H2 volume , such that 

.  denotes the initial mole number of air, 

and  refers to the time-dependent mole number of H2 cor-

responding to the increase in hydrogen volume due to its 

release. Therefore,  was converted into the hydrogen 

concentration, [ ] emitted per unit mass from the specimen 

as follows: 

 

(3)

The molar mass of hydrogen gas, [g/mol], was 2.016 

g/mol, and  is the specimen mass. In Eqs. (2) and (3), 

h t 

Vo

Vh t 

Vs

Vh t  

n t 

V t 

T0

P0 V t 

VA VH t  

V t  VA VH t += nA

nH t 

nH t 

C t 

mH2
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Fig. 1. Volumetric analysis system to measure the H2 gas released by 

a specimen after exposure to high-pressure gas and decom-

pression. (a) Specimen charged with gas in a high-pressure 

chamber. (b) After decompression in the chamber, the spe-

cimen was loaded into upper air space of graduated cylinder. 

The cylinder was immersed in a water container, and H2

emission measurements were performed. Blue in cylinder 

represents water. The ● in the cylinder represents the H2 gas 

emitted from charged sample.
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the time-dependent mole number of H2, , was converted 

into the H2 mass concentration, [ ], using the factor

.  and  are affected by fluctuations in

the temperature and pressure in laboratory environments. To 

ensure precise measurement, it is essential to compensate for 

these variations. This compensation can be achieved through 

automated programs according to Eq. (3). That is., the term 

 indicates the volume change in , 

caused by the temperature and pressure variations. The com-

pensation indicates the application of  calcu-

lation in Eq. (3). Thus, the insensitivity of the sensor to 

variations in temperature and pressure indicated the application 

of automatic compensation by the program.

The release of hydrogen gas was tracked by monitoring 

changes in the water level using an image-processing algo-

rithm or digital camera.

2.3. Pressure Measurement for H2 Concentration from      

Charged Polymers

 Fig. 2 shows a schematic of the manometric measurement 

system used to determine the concentration and diffusivity of the 

hydrogen gas released from the specimen at room temperature. 

The setup included a high-pressure chamber for H2 gas expo-

sure, as shown in Fig. 2 (a), and a rectangular specimen con-

tainer equipped with a USB-type data logger and rubber seal, as 

shown in Fig. 2 (b). The ELP sensors used to measure the pres-

sure and temperature are commercial data loggers capable of 

simultaneously recording atmospheric pressure and temperature.

After exposure and decompression in the high-pressure 

chamber, the specimen was transferred to a rectangular con-

tainer, as shown in Fig. 3 (b). As the hydrogen gas was emit-

ted from the sample, the pressure inside the vessel increased 

over time. Consequently, both the pressure (P) and tempera-

ture (T) of the gas within the specimen container changed 

over time. The hydrogen gas inside the container followed the 

ideal gas law: PV = nRT, where R is the gas constant with 

8.20544 × 10-5 m³ ·atm/(mol·K), and n represents the number 

of moles of the released gas molecules inside the specimen 

container.

The number of moles of gas emitted from the charged specimen 

was obtained by measuring the increase in pressure  versus 

time using manometric measurements at a constant container 

volume. Thus, the total number of moles [ ] obtained by mea-

suring the increased gas pressure [ ] due to the gas emitted in 

the cylindrical container is described as follows [4,144]:

(4)

where ,  and  are the temperature, initial volume, and 

initial pressure of the air, respectively, at the initial time inside 

the cylinder.  is the sum of remaining initial air pressure 

( ) and time-varying released gas pressure [ ] from spe-

cimen, i.e., ,  is remaining initial air mole, 

and  is the time-varying gas mole corresponding to gas 

pressure increase from the released gas.  is the change rate 

of temperature with respect to . Thus,  is transformed 

into the released gas concentration [ ] per mass for spe-

cimen as [144]:

nH t 

C t 

k
mH

2

msample

---------------= nH t  C t 

V t   t   t –  VH t 
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P t  Po P t += n0

n t 

 t 

T0 n t 

C t 

Fig. 2. Schematic of manometric analysis system used to measure H2 gas uptake and diffusivity in charged sample, utilizing a commercial pres-

sure/temperature logger after high-pressure exposure and decompression. (a) The sample is charged with gas inside the high-pressure 

chamber. (b) After decompression, the charged sample is loaded in a rectangular specimen container. H2 gas emission is then measured 

using a data logger in the container. The ● in the specimen container represents the H2 gas emitted from charged sample.
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 (5)

where [g/mol] is the molar mass of the hydrogen gas used; 

for H2, [g/mol] = 2.016 g/mol and  is the sample 

mass. The first term,  in Eq. (5), is the increase in pres-

sure emitted by the gas from the sample. The second term, 

, is the pressure change caused by temperature vari-

ation . The third term,  is the pressure 

change due to both temperature variation  and pressure 

increase .

According to Eqs. (4) and (5), the time-varying hydrogen 

gas mole, , is transformed to hydrogen gas mass con-

centration, [ , by .  and  are 

affected by both temperature and pressure variations. Thus, we 

compensated for the variations caused by the changes in tem-

perature and pressure. 

2.4. Analysis Program for Obtaining Transport Parameters

Assuming that hydrogen gas emission from the gas-charged 

sample follows Fickian diffusion, the concentration of the 

released gas, , is calculated as [146,147]: 

 

 

 (6)

 

where  represents the root of the zeroth-order Bessel func-

tion J0(βn). Eq. (6) is the solution to Fick’s second diffusion 

equation for a cylindrical specimen. CE(t = 0) = 0 and CE(t = 

) =  is saturated hydrogen gas concentration at infinite 

time (gas uptake). D is gas diffusivity.  and  are thickness 

and radius of cylindrical sample, respectively.

 Many of the terms in the two summations of Eq. (6) are 

included. Thus, an analysis program was developed to accu-

rately calculate  and D. Using an analysis program based on 

an optimization algorithm [135,148], we accurately calculate 

 and D from the measured results by solving Eq. (6). 

3. RESULTS AND DISCUSSIONS

3.1. Volumetric Measurement 

After decompressing a specimen enriched with hydrogen 

under high pressure, the water level in the VM method was 

measured using an image-processing algorithm and a digital 

camera [141]. According to Eqs. (3) and (6), the concentration 

and diffusivity of the released hydrogen gas were determined 

using the VM method with a graduated cylinder (Fig. 1). Figs. 

3 (a)–(d) illustrate the H2 gas volume (blue filled circle) trans-

ferred from the water level measurement and hydrogen emis-

sion content (black open square) in units of wt·ppm for 

cylindrical LDPE, HDPE, EPDM, and NBR specimens. The 

right side of Figs. 3 (a) through (d) represents the diffusion 

parameters, D and , derived using an analysis program by 

Eq. (6). The blue lines in Figs. 3 (a) through (d) represent the 

fitted values obtained using Eq. (6), with the H2 diffusivity and 

total hydrogen uptake marked by a blue arrow.

3.2. Manometric Measurement 

After decompressing the specimens enriched with hydrogen 

under high pressure, the released H2 gas concentration and dif-

fusivity were determined using the MM method for the spe-

cimens loaded in a cylindrical container (Fig. 2). According to 

Eq. (5), the H2 gas concentration in the MM method was obta-

ined from the temperature/pressure using a commercial USB-

type manometer. Similar to Fig. 3, Figs. 4 (a) through (d), the 

H2 gas volume (blue filled circle) was transferred from the 

measured pressure and hydrogen emission content (black open 

square) in units of wt·ppm for the cylindrical LDPE, HDPE, 

EPDM, and NBR specimens. The right side of Figs. 4 (a) 

through (d) represents the diffusion parameters, D and,  

derived using an analysis program by Eq. (6). The blue lines 

in Figs. 4 (a) through (d) represent the values fitted using Eq. 

(6), with the H2 diffusivity and total hydrogen uptake marked 

by a blue arrow.

As shown in Figs. 3 and 4, single-mode hydrogen emission 

behaviors in LDPE, HDPE, EPDM, and NBR were observed 

in time-varying hydrogen emission measurements. The single-

mode hydrogen emission in all specimens investigated in this 

study was attributed to gas diffusion into the amorphous phase.

Moreover, the solubility S is obtained from the H2 uptake 

versus pressure plot in Figs. 3 and 4 as follows [142,149-151]:

(7)

mg is the molar mass of H2 gas (2.016 g/mol), and d is the 

sample density. The solubilities and diffusivities of the two 

sensors for H2 gas in the LDPE, HDPE, EPDM, and NBR 

samples are listed in Table 1.

As shown in Table 1, the solubility and diffusivity in the four 

specimens for the two sensors exhibited a 10% relative 

expanded uncertainty for the measured value. The solubility 
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and diffusivity results determined from both VM and MM 

were consistent with the estimated relative uncertainty.

3.3. Performance Comparison between Volumetric    

and Manometric Gas Sensors

We evaluated the performances of the two H2 gas-sensing 

systems using a manometric data logger sensor and a volu-

metric image sensor. The results of the performance tests, 

including sensitivity, resolution, stability, measurable range, 

response time, and figure of merit are presented in Table 2. 

The sensitivity of the volumetric and manometric sensors is 

defined as the change in mass concentration relative to the 

change in volume and pressure, respectively. The obtained sen-

sitivities were 16.43 wt·ppm/mL for the volumetric sensor and 

11.96 wt·ppm/hPa for the manometric sensor. A sensor with a 

higher sensitivity typically provides better resolution. The 

resolution of the volumetric sensor was reflected by a mini-

mum measurable volume of 0.005 mL, which corresponded to 

a mass concentration of 0.08 wt·ppm. The resolution of the 

manometric sensor was reflected by the minimum measurable 

pressure (0.01 hPa), corresponding to a mass concentration of 

0.12 wt·ppm. To further improve the resolution, it is possible 

to reduce the inner volume of the graduated cylinder and 

sample container or increase the number of specimens. This 

adjustment leads to better sensitivity and resolution.

The stability of the two sensor systems was quantified by the 

standard deviation of measurements taken over 36 h after gas 

emission from the specimen ceased. This was less than 0.2% 

of the mass concentration for both sensors. The measurable 

range was defined as the maximum allowable concentration 

per specimen weight within a container with an inner volume. 

For both sensors, the measurable range was less than 1500 

wt·ppm, which can be adjusted by varying the sample weight 

and specimen container volume. The volume and pressure 

responses of the gas sensor are almost instantaneous, occurring 

within 1 s of gas emission. The FOM is defined as the standard 

deviation between the measured data and theoretical value cal-

culated using Eq. (3). An FOM value below 0.4% for the vol-

umetric sensor and 0.7% for the manometric sensor indicated 

Fig. 3. Diffusion parameters determined in cylindrical LDPE, HDPE, EPDM, and NBR specimen using volumetric method with image-pro-

cessing algorithm and a digital camera. (a-d): Measured volume (blue filled circle) converted from the measured water level and H2 emis-

sion (black open square) derived from the measured H2 volume in units of wt·ppm for four specimens. The difference in patterns between 

the measured volume and H2 emission is due to temperature/pressure compensation applied using Eq. (2). The blue line represents the 

fitted results by Eq. (6), with gas diffusivity (D) and the total gas uptake ( ) indicated by a blue arrow. Here, R is the radius and T 

is the thickness of the cylindrical specimen. 

C

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good agreement between the theoretical and measured values. 

Based on performance testing, the specifications (sensitivity, 

resolution, and FOM) of the VM sensor were superior to those 

of the MM sensor.

4. CONCLUSIONS

Hydrogen gas sensors are important for ensuring the safety 

and protection of hydrogen infrastructure. To meet these 

requirements, we developed two hydrogen-sensing systems 

that utilize volumetric measurements with a graduated cylin-

der, image-processing algorithm, and digital camera. Changes 

in the pixel position of the water level in the cylinder due to the 

released hydrogen were correlated with the emitted H2 gas vol-

ume, enabling precise H2 content measurements. By incor-

porating a diffusion-permeation analysis program, this 

Fig. 4. Diffusion parameters determined in cylindrical LDPE, HDPE, EPDM, and NBR specimens by manometric method using USB-type mano-

meter and specimen container. (a-d): Measured pressure (blue filled circle) and H2 emission (black open square) transferred from measured 

H2 pressure in units of wt·ppm for four specimens. The difference in patterns between the measured pressure and H2 emission is due to 

temperature/pressure compensation applied using Eq. (4). The blue line represents the fitted results by Eq. (6), with gas diffusivity (D) 

and the total gas uptake ( ) marked by a blue arrow. Here, R is the radius and T is the thickness of the cylindrical specimen.C


Table 1. Solubility and diffusivity of hydrogen gas determined in four different polymers.

Method
Solubility [mol/m3·MPa] Diffusivity [×10−11 m2/s]

LDPE HDPE EPDM NBR LDPE HDPE EPDM NBR

VM 5.83 3.67 10.15 7.79 23.39 14.18 61.26 19.30

MM 6.00 3.83 10.76 7.97 24.12 13.68 56.32 18.91

Table 2. Performance comparisons for two sensor systems using vol-

umetric and manometric methods

Performance
Volumetric measure-

ment

Manometric measure-

ment

Sensitivity 16.43 wt·ppm/mL 11.96 wt·ppm/hPa

Resolution 0.08 wt·ppm 0.12 wt·ppm

Stability ≤ 0.2% ≤ 0.2%

Measuring range Max. 1400 wt·ppm Max. 1500 wt·ppm

Response time ≤ 1 s ≤ 1 s

FOM 0.4% 0.7%
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volumetric image hydrogen sensor can effectively detect H2

concentrations and diffusivity from H2-enriched specimens 

under high-pressure conditions. 

A simple manometric gas-sensing system was developed to 

characterize hydrogen gas. This technique, based on pressure 

measurements in a gas-charged specimen container and using 

a simple commercial data logger, leveraged the increase in gas 

pressure caused by H2 gas released from high-pressure poly-

mer specimens to determine the H2 gas concentration and dif-

fusivity via a diffusion analysis program.

The two effective and portable hydrogen sensor systems 

demonstrated several performance metrics: a low detection 

limit of H2 content, a measurable range of up to 1500 wt·ppm, 

stability of 0.2%, and a rapid response time within 1 s. Fur-

thermore, the insensitivity of the two sensors to temperature 

and pressure fluctuations makes them suitable for gas detec-

tion. High-performance systems with volumetric and mano-

metric methods demonstrated successful real-time 

measurement and characterization of H2. They effectively 

measure the uptake and diffusivity of gases emitted from spec-

imens with expanded uncertainty by considering the influ-

encing factors. The main features of the two developed gas-

sensing methods are as follows.

- Cost-effective and simple techniques: These two meth-

ods offer inexpensive and straightforward approaches for mea-

suring the gas uptake and diffusivity in H2-charged polymers.

- Stability with respect to temperature and pressure: The 

two methods are stable against variations in temperature and 

pressure and are suitable for diverse specimen sizes and 

shapes.

- Precise calculation: Each method enables exact calcula-

tion by an analysis program.

- Adjustable sensitivity and range: Volumetric and mano-

metric methods allow for adjustable sensitivity, resolution, and 

measurement range.

- Visible H2 release monitoring: The volumetric method 

offers visual monitoring of gas release and leakage through 

changes in the water level.

The solubility and diffusivity results obtained from both the 

volumetric and manometric measurements were consistent 

with the estimated relative uncertainty. These two comple-

mentary methods are well suited for effectively measuring the 

hydrogen gas transport properties in sealing elastomers and 

can be applied to evaluate the permeation characteristics of 

rubber materials and O-rings under high-pressure conditions, 

making them ideal for use in hydrogen fueling station appli-

cations. 
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