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1. INTRODUCTION

The exploration capabilities of autonomous underwater 

vehicles (AUVs) in unknown environments are important for 

ocean research, environmental monitoring, and resource 

exploration. To enable these capabilities, it is necessary to pro-

vide robots with highly reliable maps using technologies such 

as simultaneous localization and mapping (SLAM). In addi-

tion, in unknown underwater environments where teleoper-

ation is limited, robots must autonomously generate active 

paths to build a map.

Robust mapping and autonomous exploration methodologies 

for mobile robots have been studied extensively. In particular, 

SLAM has been widely investigated and proven to be 

effective for many mobile robot sensing platforms [1-3]. In 
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[4] and [5], a method was introduced to represent maps using 

entropy, a concept from information theory that expresses 

uncertainty. This approach enables robots to plan optimal paths 

autonomously and explore unknown environments. However, 

these studies have generally been validated on ground robot 

platforms that utilize optical cameras or LiDARs, which are 

effective on the ground. It has been experimentally verified 

that such sensors are not suitable for underwater environments 

because of their high turbidity and signal attenuation rate [6,7].

Owing to such harsh underwater sensing environments, 

AUVs often rely on acoustic-based sensors, such as forward-

looking and profiling sonars, to acquire nearby information. 

Image sonar is a widely used sensor for underwater 

exploration that measures the features (time-of-flight and 

intensities) of sonar reflections by projecting multiple sonar 

beams and receiving the reflected signals. It then provides fea-

ture measurements in 2-dimensional (2D) images. However, 

sonar measurements have low signal-to-noise ratios (SNR), 

and their elevation information is lost owing to the 2D image 

generation mechanism of image sonar [8,9]. Therefore, a 

method that considers these limitations is required when 

applying image sonar to underwater mapping. [10] and [11] 

proposed a space-carving-based underwater mapping 

technique, and [12] introduced a method for restoring the 

shapes of underwater objects by combining an image sonar 

with a rotational instrument. However, these methods require 

multiple sonar images and the AUV to remain stationary or 

follow ideal paths, which are difficult to achieve using real 

AUVs. [13] and [14] proposed methods for generating 3D 

point clouds using forward-moving AUVs. However, owing to 

the limitations of the field-of-view (FoV) of the sensor, it is not 

possible to reconstruct the overall shape of objects that exceed 

the FoV using a single scan. To address this issue, [15] 

proposed a method for reconstructing underwater objects using 

sonar images obtained from different scan paths while 

optimally selecting consecutive scanning directions. However, 

this approach relies on 2D sonar image data to generate the 

next scan path and align the scanned information, resulting in 

less accurate reconstruction results when applied to objects 

with unstructured shapes.

To overcome these limitations, this study proposes a two-stage 

underwater scanning method for AUVs for efficient underwater 

mapping (Fig. 1). In the first stage, the robot follows a predefined 

scanning path and generates a probabilistic 3-dimensional (3D) 

volumetric map using the 2D image sonar data acquired during 

the process. In the second stage, the probabilistic map is 

represented based on entropy, and a successive path that can scan 

the most uncertain region is generated and followed. Simulation 

results show that the proposed method provides efficient AUV 

scan paths to achieve accurate 3D reconstruction of seabed 

topography and underwater objects. The proposed method 

enables the autonomous exploration of AUVs in unknown 

underwater environments.

2. Method

The pipeline of the proposed method is illustrated in Fig. 

2, where the two-stage process is divided into seven distinct 

Fig. 2. Pipeline of proposed scanning method.
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steps. The process begins with the generation of an initial 

volumetric map from sonar data collected as the AUV fol-

lows a predefined scan path. This volumetric map is then 

converted into an entropy map to identify the region with the 

highest uncertainty. Using this information, the successive 

scanning attitudes and paths that minimize map uncertainty 

are determined. The entire process is iterated until the fifth 

stage, as shown in Fig. 2, where an entropy summation 

check is performed. The detailed implementation and expla-

nation of each step are provided in the following subsec-

tions.

2.1 3D Volumetric Mapping Using Sonar Images

Volumetric mapping is a method for probabilistically 

estimating a map based on AUV attitude and sensor data in 

an environment with uncertainty. The environment is 

represented as a collection of volumetric elements such as 

grids and voxels. In this study, we used a 3D occupancy 

voxel map for underwater navigation, in which the 

occupancy probability of each voxel was updated with each 

new observation. The AUV's attitude is represented by the 

state vector , and the observation data

 is a sonar image represented as a 2D matrix. The entire map

 is a set of voxels  each representing an 

occupancy state. Voxel  is represented by a state vector 

, and the occupancy probability of the voxel is 

represented by . Assuming that each voxel  is 

independent, the probability of the entire map  is defined as

. (1)

The map is updated based on the observations  and AUV 

attitude  over time . The probability that voxel  is 

occupied, , is calculated as follows:

(2)

Here,  represents the normalization term that ensures that 

the raw sonar image is analyzed according to predefined cri-

teria, distinguishing between occupied and empty pixels, as 

shown in Fig. 3 (b). Because of the sonar characteristics, 

these pixels do not provide elevation information in the 3D 

world's spherical coordinate system. Therefore, as illustrated 

in Figs. 3 (c) and (d), all the voxels corresponding to the 

pixel within the sonar FoV from  are searched, and the 

occupancy probability of each cell is updated using Eq. (2). 

As the AUV moves along a designated path and updates the 

map based on multiple sonar images, the approximate shape 

of the seabed can be obtained, allowing the creation of an ini-

tial map.

2.2 Entropy-Based Map Representation

The underwater volumetric mapping method described 

above has the advantage of providing approximate height 

information of objects and the seabed; however, it also has 

some limitations. In particular, owing to the characteristics of 

sonars, no information can be obtained in the shadow region 

behind objects. This issue arises from the imaging mechanism 

of sonars and requires additional observations in these areas. 

To address this problem, we introduced an entropy map [16]. 

The entropy map quantitatively represents the uncertainty of 

each voxel. The entropy  of each voxel,  is calculated 

using the following equation:

. (3)

This equation is a binary entropy function that represents the 

uncertainty of a voxel's occupancy state as a value between 0 

and 1. An entropy close to 1 indicates high uncertainty regard-

ing the state of the voxel, whereas a value close to 0 indicates 

high certainty. Using this representation, the AUV can identify 

the most uncertain high-entropy regions in the initial map. 

These regions can then be used as waypoints for an optimal 

secondary scan path.

2.3 Finding Successive Scan Paths Using Entropy    

Map

Using the previously generated entropy map, the 3D position 

of each voxel in the map was correlated with its uncertainty, 

allowing calculation and analysis. To identify the most 

uncertain point in the current map, we utilized the DBSCAN 

algorithm, which is a clustering method that groups 

neighboring points within a specified radius. Thus, multiple 

clusters with high entropy values can be identified on the map. 

The center of each cluster is considered a candidate point for 

the next scan. Among these clusters, the cluster with the largest 
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Fig. 3. Voxel representation of a sonar image. (a) Raw sonar image, 

(b) pixel thresholding result, (c) occupied voxels, (d) empty 

voxels.
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number of high-entropy voxels is selected as , and its 

centroid position is defined as . Once 

is determined, the next step is to calculate the successive path 

for scanning it. For this, candidate scan attitudes ( R
6) are 

generated around . Among the  candidate attitudes, 

one is defined as . Given the characteristics of the 

conventional hovering-type AUV used, the roll and pitch 

values are assumed to remain constant. The generated 

candidate attitudes are expressed as follows: 

, where (4)

. (5)

Because the AUV is assumed to maintain a constant altitude, 

the initial altitude, , is used for all sample points. The 

parameter  is defined as the radius of , determined by 

the maximum distance of the points within  in the xy-

plane. For each generated , the entropy summation 

( ) is calculated. This calculation reflects the 

characteristics of the proposed sonar-image-based volumetric 

mapping method. Each beam of the image sonar corresponds 

to a column of the sonar image. The sonar image is explored 

column-by-column from the minimum to maximum range. 

During this process, only empty pixels before the first 

occupied pixel are considered valid and integrated into the 

map. Similarly, the entropy summation for each candidate 

attitude is calculated by summing the entropy values of the 

voxels between the attitude and the first occupied voxel along 

each beam.  is defined as follows: 

,

where , (6)

where B represents the total number of beams in the image 

sonar, which consists of multiple sonar beams, and  refers to 

an individual sonar beam within . The term   

represents the distance between the sonar pose and closest 

occupied voxel within beam b. Finally, the candidate attitude 

with the maximum entropy summation value is selected as the 

successive attitude for scanning, . 

(7)

 
The successive scanning path starts from  and consists 

of  waypoints  connecting  to , which are 

calculated through linear interpolation. The set of waypoints is 

defined as follows:

, ,

where (8)

 

Following this approach, the AUV generates a successive 

scanning path, enabling it to scan the most uncertain region in 

the initial map and effectively reduce map uncertainty.

2.4 Scan Termination Criteria

By continuing the scanning process described above, the 

entropy of  gradually decreases. However, because of the 

image-sonar sensor mechanism, voxels that are physically 

inside the object (i.e., those within the volume that constitutes 

the object’s interior) cannot be detected; thus, their associated 

entropy cannot be reduced. Because  includes the entropy 

of these internal voxels, the total entropy of  cannot be 

reduced beyond a certain lower bound. Therefore, we calculate 

the extent to which , computed for each , can 

reduce the total entropy of ( ) by considering the 

characteristics of the sensor mechanism of the image sonar. 

This value is then compared with a predefined termination 

criterion (TC) to determine whether the next scan is 

meaningful. The corresponding equations are defined as 
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follows:

, . (9)

Here, TC has a value between 0 and 1, determined based on 

factors such as the FoV of the beam and allowable scanning 

time. If the above equation is satisfied, the scanning process is 

terminated.

3. EXPERIMENTS

The proposed methodology was validated using an ROS-

based UUV-Sim [17] environment. The experiments were con-

ducted under two scenarios. Fig. 4 illustrates the experimental 

environment of each scenario and provides sample sonar 

images obtained under these settings [18]. Scenario 1 features 

a terrain with a tetrapod, whereas Scenario 2 involves a ship-

wreck positioned in the same location. In Scenario 1, the object 

was fully contained within the FoV of the sonar, whereas in 

Scenario 2, it was significantly larger than the FoV of the 

sonar. Detailed information on the environmental settings and 

sonar configurations for each scenario is listed in Table 1.

The AUV ‘Cyclops’ [19] used in the experiment is a hov-

ering-type AUV that is equipped with six thrusters for its 4 

degrees of freedom control (without roll and pitch control). 

The AUV estimates its state using the IMU and DVL sensors 

and maintains its position through PID control based on the 

estimated states and thruster outputs. To collect the observa-

If i
Hsum

i

Htotal

C
max

------------ TC

Fig. 5. Procedure result of proposed method at scenario 1.

Table 1. Simulation Specifications

Specification Scenario #1 Scenario #2

Image

Sonar

Horizontal angle (deg) 29

Elevation angle (deg) 14

Max detection range (m) 12.825

Min detection range (m) 0

Num of beams 96

Tilt angle (deg) 30

Object
Type Tetrapod Ship wreck

Boundary size (m) (4.1, 3.7, 3.3) (6.3, 11.4, 6.9)

Threshold

Pixel threshold [0,255] 76

High entropy threshold 0.99

TC [0,1] 0.3 0.1
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tional data, an image sonar tilted 30° downward toward the 

seabed was mounted at the bottom of the AUV.

In Scenarios 1 and 2, 20 sample poses were generated, and 

the predefined path was set as a straight line passing over the 

center of the object. Using the ground-truth values provided by 

Gazebo, the robot and sensor poses were assumed to be 

accurate. The total trajectory for each scenario can be found in 

the “trajectory”  section of Fig. 5 and Fig. 6.

In Scenario 1, the object was sized such that it fit entirely 

within the FoV of the sensor. Consequently, most of the front 

surface of the object was reconstructed after the initial scan. A 

significant amount of entropy was formed on the rear side of 

the object, leading to the generation of  for  at the 

center of the rear side. The radius r was determined to be 5 m 

based on the x-y plane radius of , and the sample poses 

were generated accordingly. Excluding the initial scan path, 

two additional scans were performed, with each successive 

scan path depicted as green paths under the “successive path 

search” section of Fig. 5. During the third scan, the scan TC 

determined that all  had failed to exceed the TC, and the 

scanning was terminated.

In Scenario 2, unlike in Scenario 1, the object was larger 

than the FoV of the sensor, indicating that not all parts of the 

object were captured in the initial scan. Consequently, a 

significant entropy was observed on both the rear and side 

surfaces of the object. Additionally, because of the large size of 

the object,  was generated not at the rear of the object but 

within its interior. The radius r was determined to be 8 m, 

resulting in the generation of sample poses over a wider area 

compared with that in Scenario 1. Excluding the initial scan 

path, three additional scans were conducted, and these 

successive scan paths are also depicted as green paths under 

the “Successive path search” section of Fig. 6. In the fourth 

scan, all  images failed to exceed the TC, and the scan 

was terminated.

Xcenter Cmax

Cmax

Hsum

i

Cmax

Hsum

i

Fig. 6. Procedure result of the proposed method at Scenario 2.
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4. RESULTS

The object-reconstruction rate was assessed to evaluate the 

accuracy of the proposed mapping method. A ground truth 

voxel map was generated based on the model used in the sim-

ulation. The comparison between the volumetric map gener-

ated by the proposed method and the ground truth voxel map 

was conducted using the following metrics, namely precision 

(P), recall (R), and  score.

(10)

(11)

. (12)

Here, TP refers to the voxels present in the ground-truth 

model and that were successfully reconstructed in the mapping 

results. False positive (FP) represents noise voxels that are not 

in the ground truth model but are generated in the mapping 

results. False negative (FN) refers to voxels that exist in the 

ground-truth model but are missing from the mapping results.

The object reconstruction accuracy of the proposed method 

was compared with data obtained from two different scanning 

paths. The mapping process followed the approach outlined in 

Section 2.1. For the lawnmower path, scanning was conducted 

from a position where the object was initially not visible in the 

sonar FoV, thereby ensuring that the entire object passed 

through the scanning area. For the uniform path, the number of 

scans matched the number of scans in the proposed method, 

dividing 360° into equal segments. The heading angle was set 

to align with the object, creating straight paths passing over its 

center. The path shapes for the lawnmower and uniform meth-

ods are shown in Fig. 7. Tables 2 and 3 present the evaluation 

results of the reconstructed seabed objects in Scenarios 1 and 

2, respectively, comparing the proposed method with the ref-

erence paths in terms of precision, recall, and F-scores. It can 

be observed that the precision values are lower than the recall 

values. This is because a significant number of voxels were 

classified as FPs. As shown in Fig. 8, this occurs because of 

the limitations of the image sonar mechanism, specifically, the 

lack of elevation information, which results in the generation 

of voxels at the bottom of the object that are counted as FPs.

5. CONCLUSIONS

This study proposes a two-stage scanning method for the 

efficient 3D reconstruction of unknown seabed topography and 

underwater objects. In the first stage, a 3D occupancy map was 

generated using underwater image sonar. In the second stage, 

the initially generated map was transformed into an entropy 

map, which was used to generate the next scan path. The data 

acquired along the new scan paths were used to continuously 

update the seabed topography and objects. To determine the 

next scan path, an entropy summation method reflecting the 

characteristics of the sonar image mechanism was proposed. 

This method quantitatively defines meaningful scans based on 

the ratio of the remaining entropy summation to the entropy 

that can be acquired from the candidate scan poses, allowing 
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TP FN+
---------------------=

F 1 
 2

+  P R
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--------------------------=

Fig. 7. Comparison of scan paths: (a) lawnmower path, (b) uniform 

path in scenario 1, (c) uniform path in scenario 2

Fig. 8. Comparison of ground truth voxels (green) and the generated 

voxels (red) using the proposed method.

Table 2. Performance Comparison of Scanning Methods of Scenario 1

Lawn mower Uniform 360
Proposed 

Method

Precision 0.249 0.365 0.390

Recall 0.587 0.774 0.811

F1 Score 0.350 0.496 0.527

F2 Score 0.462 0.632 0.667

F3 Score 0.518 0.696 0.732

Table 3. Performance Comparison of Scanning Methods of Scenario 2

Lawn mower Uniform 360
Proposed 

Method

Precision 0.302 0.343 0.316

Recall 0.228 0.718 0.701

F1 Score 0.260 0.464 0.436

F2 Score 0.240 0.589 0.564

F3 Score 0.234 0.647 0.625
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the robot to autonomously terminate the scanning process. 

This study conducted computer simulations of two scenarios, 

demonstrating that the underwater robot could autonomously 

generate and follow paths based on the initially created map 

and update the map iteratively. The reconstruction accuracy of 

the proposed method was found to be higher than or com-

parable with that achieved using predefined comparison paths 

in terms of both the precision and recall of the reconstructed 

objects.
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